Semiconductor Nanowires in Terahertz Photonics: From Spectroscopy to Ultrafast Nanowire-Based Devices

Institute of Electrical and Electronics Engineers (IEEE) (2017) 1-2

Authors:

Hannah J Joyce, Sarwat A Baig, Jennifer Wong-Leung, H Hoe Tan, C Jagadish, Jessica L Boland, Djamshid A Damry, Christopher L Davies, Laura M Herz, Michael B Johnston

Influence of interface morphology on hysteresis in vapor-deposited perovskite solar cells

Advanced Electronic Materials Wiley 3:2 (2016) 1600470

Authors:

Jay B Patel, J Wong-Leung, Stephan Van Reenen, Nobuya Sakai, Jacob Tse Wei Wang, Elizabeth S Parrott, Mingzhen Liu, Henry J Snaith, Laura M Herz, Michael Johnston

Abstract:

Hysteresis in the current–voltage characteristics of vapor-deposited perovskite solar cells is shown to originate from an amorphous region of CH3NH3PbI3 at the interface with the device's electron transport layer. Interface engineering is used to produce highly crystalline perovskite material at this interface which results in hysteresis-free evaporated planar heterojunction solar cells.

Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped organic electron extraction layers

Advanced Materials Wiley 29:5 (2016)

Authors:

Zhiping Wang, David P McMeekin, Nobuya Sakai, Stephan van Reenen, Konrad Wojciechowski, Jay B Patel, Michael Johnston, Henry J Snaith

Abstract:

Air-stable doping of the n-type fullerene layer in an n-i-p planar heterojunction perovskite device is capable of enhancing device efficiency and improving device stability. Employing a (HC(NH2 )2 )0.83 Cs0.17 Pb(I0.6 Br0.4 )3 perovskite as the photoactive layer, glass-glass laminated devices are reported, which sustain 80% of their "post burn-in" efficiency over 3400 h under full sun illumination in ambient conditions.

Photovoltaic mixed-cation lead mixed-halide perovskites: Links between crystallinity, photo-stability and electronic properties

Energy and Environmental Science Royal Society of Chemistry 10:1 (2016) 361-369

Authors:

Waqaas Rehman, David P McMeekin, Jay B Patel, Rebecca L Milot, Michael B Johnston, Henry J Snaith, Laura M Herz

Abstract:

Lead mixed halide perovskites are highly promising semiconductors for both multi-junction photovoltaic and light emitting applications due to their tunable band gaps, with emission and absorption energies spanning the UV-visible to near IR regions. However, many such perovskites exhibit unwanted halide segregation under photoillumination, the cause of which is still unclear. In our study, we establish crucial links between crystal phase stability, photostability and optoelectronic properties of the mixed-cation lead mixed-halide perovskite CsyFA(1-y)Pb(BrxI(1-x))3. We demonstrate a region for caesium content between 0.10 < y < 0.30 which features high crystalline quality, long chargecarrier lifetimes and high charge-carrier mobilities. Importantly, we show that for such high-quality perovskites, photoinduced halide segregation is strongly suppressed, suggesting that high crystalline quality is a prerequisite for good optoelectronic quality and band gap stability. We propose that regions of short-range crystalline order aid halide segregation, possibly by releasing lattice strain between iodide rich and bromide rich domains. For an optimized caesium content, we explore the orthogonal halide-variation parameter space for Cs0.17FA0.83Pb(BrxI(1-x))3 perovskites. We demonstrate excellent charge-carrier mobilities (11-40 cm2 V^−1 s^−1) and diffusion lengths (0.8 - 4.4 µm) under solar conditions across the full iodide-bromide tuning range. Therefore, the addition of caesium yields a more photostable perovskite system whose absorption onsets can be tuned for bandgap-optimized tandem solar cells.

Extracting the key electrical properties of semiconductors using optical pump terahertz probe spectroscopy

41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2016 IEEE 2016-November (2016)

Abstract:

We have used optical-pump-terahertz-probe spectroscopy (OPTPS) to study a range of novel of semiconductors including III-V nanowires and metal halide perovskites. We show that OPTPs allows key figures of merit to be extracted in a non-contact manner, including charge mobility, surface recombination velocity, and doping density. Furthermore, the technique allows charge recombination dynamics to be followed on a picosecond time-scale. This knowledge is useful in the design of new optoelectronic devices from lasers to solar cells as well as for the development and optimisation of new semiconductors.