Charge-Carrier Dynamics in Hybrid Metal Halide Perovskites for Photovoltaics and Light Emission

Institute of Electrical and Electronics Engineers (IEEE) (2017) 1-1

Authors:

Rebecca L Milot, Michael B Johnston, Laura M Herz

Investigations of Doping Via Optical Pump Terahertz-Probe Spectroscopy

Institute of Electrical and Electronics Engineers (IEEE) (2017) 1-1

Authors:

Jessica L Boland, A Casadei, G Tütüncouglu, F Matteini, C Davies, F Gaveen, F Amaduzzi, HJ Joyce, LM Herz, A Fontcuberta I Morral, Michael B Johnston

Large-Scale Statistics for Threshold Optimization of Optically Pumped Nanowire Lasers.

Nano letters 17:8 (2017) 4860-4865

Authors:

Juan Arturo Alanis, Dhruv Saxena, Sudha Mokkapati, Nian Jiang, Kun Peng, Xiaoyan Tang, Lan Fu, Hark Hoe Tan, Chennupati Jagadish, Patrick Parkinson

Abstract:

Single nanowire lasers based on bottom-up III-V materials have been shown to exhibit room-temperature near-infrared lasing, making them highly promising for use as nanoscale, silicon-integrable, and coherent light sources. While lasing behavior is reproducible, small variations in growth conditions across a substrate arising from the use of bottom-up growth techniques can introduce interwire disorder, either through geometric or material inhomogeneity. Nanolasers critically depend on both high material quality and tight dimensional tolerances, and as such, lasing threshold is both sensitive to and a sensitive probe of such inhomogeneity. We present an all-optical characterization technique coupled to statistical analysis to correlate geometrical and material parameters with lasing threshold. For these multiple-quantum-well nanolasers, it is found that low threshold is closely linked to longer lasing wavelength caused by losses in the core, providing a route to optimized future low-threshold devices. A best-in-group room temperature lasing threshold of ∼43 μJ cm-2 under pulsed excitation was found, and overall device yields in excess of 50% are measured, demonstrating a promising future for the nanolaser architecture.

Band-tail recombination in hybrid lead iodide perovskite

Advanced Functional Materials Wiley (2017)

Authors:

AD Wright, Rebecca L Milot, GE Eperon, Henry J Snaith, Laura Johnston, Michael B Herz

Abstract:

Traps limit the photovoltaic efficiency and affect the charge transport of optoelectronic devices based on hybrid lead halide perovskites. Understanding the nature and energy scale of these trap states is therefore crucial for the development and optimization of solar cell and laser technology based on these materials. Here, the low-temperature photoluminescence of formamidinium lead triiodide (HC(NH2)2PbI3) is investigated. A power-law time dependence in the emission intensity and an additional low-energy emission peak that exhibits an anomalous relative Stokes shift are observed. Using a rate-equation model and a Monte Carlo simulation, it is revealed that both phenomena arise from an exponential trap-density tail with characteristic energy scale of ≈3 meV. Charge-carrier recombination from sites deep within the tail is found to cause emission with energy downshifted by up to several tens of meV. Hence, such phenomena may in part be responsible for open-circuit voltage losses commonly observed in these materials. In this high-quality hybrid perovskite, trap states thus predominantly comprise a continuum of energetic levels (associated with disorder) rather than discrete trap energy levels (associated, e.g., with elemental vacancies). Hybrid perovskites may therefore be viewed as classic semiconductors whose bandstructure picture is moderated by a modest degree of energetic disorder.

Choice of Polymer Matrix for a Fast Switchable III-V Nanowire Terahertz Modulator

MRS Advances Springer Nature 2:28 (2017) 1475-1480

Authors:

Sarwat A Baig, Jessica L Boland, Djamshid A Damry, Hoe H Tan, Chennupati Jagadish, Michael B Johnston, Hannah J Joyce