Gargantuan chaotic gravitational three-body systems II. Dependence on angular momentum and astrophysical scale
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 536:3 (2024) 2993-3006
Influence of the density gradient on turbulent heat transport at ion-scales: an inter-machine study with the gyrokinetic code stella
Nuclear Fusion IOP Publishing 65:1 (2024) 016062
Abstract:
Efficient control of turbulent heat transport is crucial for magnetic confinement fusion reactors. This work discusses the complex interplay between density gradients and microinstabilities, shedding light on their impact on turbulent heat transport in different fusion devices. In particular, the influence of density gradients on turbulent heat transport is investigated through an extensive inter-machine study, including various stellarators such as W7-X, LHD, TJ-II and NCSX, along with the Asdex Upgrade tokamak (AUG) and the tokamak geometry of the Cyclone Base Case (CBC). Linear and nonlinear simulations are performed employing the δf-gyrokinetic code stella across a wide range of parameters to explore the effects of density gradients, temperature gradients, and kinetic electrons. A strong reduction in ion heat flux with increasing density gradients is found in NCSX and W7-X due to the stabilization of temperature-gradient-driven modes without significantly destabilizing density-gradient-driven modes. In contrast, the tokamaks exhibit an increase in ion heat flux with density gradients. Notably, the behavior of ion heat fluxes in stellarators does not align with that of linear growth rates, if only the fastest-growing mode is taken into account. Additionally, this study provides physical insights into the microinstabilities, emphasizing the dominance of trapped-electron-modes (TEMs) in CBC, AUG, TJ-II, LHD and NCSX, while both the TEM and the passing-particle-driven universal instability contribute significantly in W7-X.Black Hole Merger Rates in AGN: contribution from gas-captured binaries
(2024)
Numerical simulations of laser-driven experiments of ion acceleration in stochastic magnetic fields
Physics of Plasmas American Institute of Physics 31:12 (2024) 122105
Abstract:
We present numerical simulations used to interpret laser-driven plasma experiments at the GSI Helmholtz Centre for Heavy Ion Research. The mechanisms by which non-thermal particles are accelerated, in astrophysical environments e.g., the solar wind, supernova remnants, and gamma ray bursts, is a topic of intense study. When shocks are present the primary acceleration mechanism is believed to be first-order Fermi, which accelerates particles as they cross a shock. Second-order Fermi acceleration can also contribute, utilizing magnetic mirrors for particle energization. Despite this mechanism being less efficient, the ubiquity of magnetized turbulence in the universe necessitates its consideration. Another acceleration mechanism is the lower-hybrid drift instability, arising from gradients of both density and magnetic field, which produce lower-hybrid waves with an electric field which energizes particles as they cross these waves. With the combination of high-powered laser systems and particle accelerators it is possible to study the mechanisms behind cosmic-ray acceleration in the laboratory. In this work, we combine experimental results and high-fidelity threedimensional simulations to estimate the efficiency of ion acceleration in a weakly magnetized interaction region. We validate the FLASH MHD code with experimental results and use OSIRIS particle-in-cell (PIC) code to verify the initial formation of the interaction region, showing good agreement between codes and experimental results. We find that the plasma conditions in the experiment are conducive to the lower-hybrid drift instability, yielding an increase in energy ∆E of ∼ 264 keV for 242 MeV calcium ions.Observability of dynamical tides in merging eccentric neutron star binaries
Physical Review D American Physical Society 110:10 (2024) 103043