A numerical study of stellar discs in galactic nuclei

Monthly Notices of the Royal Astronomical Society Oxford University Press 517:4 (2022) 6205-6224

Authors:

Taras Panamarev, Bence Kocsis

Abstract:

We explore the dynamics of stellar discs in the close vicinity of a supermassive black hole (SMBH) by means of direct N-body simulations. We show that an isolated nuclear stellar disc exhibits anisotropic mass segregation meaning that massive stars settle to lower orbital inclinations and more circular orbits than the light stars. However, in systems in which the stellar disc is embedded in a much more massive isotropic stellar cluster, anisotropic mass segregation tends to be suppressed. In both cases, an initially thin stellar disc becomes thicker, especially in the inner parts due to the fluctuating anisotropy in the spherical component. We find that vector resonant relaxation is quenched in the disc by nodal precession, but it is still the most efficient relaxation process around SMBHs of mass 106 M⊙ and above. Two-body relaxation may dominate for less massive SMBHs found in dwarf galaxies. Stellar discs embedded in massive isotropic stellar clusters ultimately tend to become isotropic on the local two-body relaxation time-scale. Our simulations show that the dynamics of young stars at the centre of the Milky Way is mostly driven by vector resonant relaxation leading to an anticorrelation between the scatter of orbital inclinations and distance from the SMBH. If the S-stars formed in a disc less than 10 Myr ago, they may coexist with a cusp of stellar mass black holes or an intermediate mass black hole with mass up to 1000 M⊙ to reproduce the observed scatter of angular momenta.

Searches for Neutrinos from Gamma-Ray Bursts Using the IceCube Neutrino Observatory

The Astrophysical Journal American Astronomical Society 939:2 (2022) 116

Authors:

R Abbasi, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, JM Alameddine, AA Alves, NM Amin, K Andeen, T Anderson, G Anton, C Argüelles, Y Ashida, S Athanasiadou, S Axani, X Bai, A Balagopal V., SW Barwick, V Basu, S Baur, R Bay, JJ Beatty, K-H Becker, J Becker Tjus, J Beise, C Bellenghi, S Benda, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, M Boddenberg, F Bontempo, JY Book, J Borowka, S Böser, O Botner, J Böttcher, E Bourbeau, F Bradascio, J Braun, B Brinson, S Bron, J Brostean-Kaiser, RT Burley, RS Busse, MA Campana, EG Carnie-Bronca, C Chen, Z Chen, D Chirkin, K Choi, BA Clark, K Clark, L Classen, A Coleman, GH Collin, A Connolly, JM Conrad, P Coppin, P Correa, DF Cowen, R Cross, C Dappen, P Dave, C De Clercq, JJ DeLaunay, D Delgado López, H Dembinski, K Deoskar, A Desai, P Desiati, KD de Vries, G de Wasseige, T DeYoung, A Diaz, JC Díaz-Vélez, M Dittmer, H Dujmovic, MA DuVernois, T Ehrhardt, P Eller, R Engel, H Erpenbeck, J Evans, PA Evenson, KL Fan, AR Fazely, A Fedynitch, N Feigl, S Fiedlschuster, AT Fienberg, C Finley, L Fischer, D Fox, A Franckowiak, E Friedman, A Fritz, P Fürst, TK Gaisser, J Gallagher, E Ganster, A Garcia, S Garrappa, L Gerhardt, A Ghadimi, C Glaser, T Glauch, T Glüsenkamp, N Goehlke, JG Gonzalez, S Goswami, D Grant, T Grégoire, S Griswold, C Günther, P Gutjahr, C Haack, A Hallgren, R Halliday, L Halve, F Halzen, M Ha Minh, K Hanson, J Hardin, AA Harnisch, A Haungs, K Helbing, F Henningsen, EC Hettinger, S Hickford, J Hignight, C Hill, GC Hill, KD Hoffman, K Hoshina, W Hou, M Huber, T Huber, K Hultqvist, M Hünnefeld, R Hussain, K Hymon, S In, N Iovine, A Ishihara, M Jansson, GS Japaridze, M Jeong, M Jin, BJP Jones, D Kang, W Kang, X Kang, A Kappes, D Kappesser, L Kardum, T Karg, M Karl, A Karle, U Katz, M Kauer, M Kellermann, JL Kelley, A Kheirandish, K Kin, J Kiryluk, SR Klein, A Kochocki, R Koirala, H Kolanoski, T Kontrimas, L Köpke, C Kopper, S Kopper, DJ Koskinen, P Koundal, M Kovacevich, M Kowalski, T Kozynets, E Krupczak, E Kun, N Kurahashi, N Lad, C Lagunas Gualda, MJ Larson, F Lauber, JP Lazar, JW Lee, K Leonard, A Leszczyńska, Y Li, M Lincetto, QR Liu, M Liubarska, E Lohfink, CJ Lozano Mariscal, L Lu, F Lucarelli, A Ludwig, W Luszczak, Y Lyu, W Y., J Madsen, KBM Mahn, Y Makino, S Mancina, IC Mariş, I Martinez-Soler, R Maruyama, S McCarthy, T McElroy, F McNally, JV Mead, K Meagher, S Mechbal, A Medina, M Meier, S Meighen-Berger, Y Merckx, J Micallef, D Mockler, T Montaruli, RW Moore, R Morse, M Moulai, T Mukherjee, R Naab, R Nagai, U Naumann, J Necker, LV Nguyễn, H Niederhausen, MU Nisa, SC Nowicki, A Obertacke Pollmann, M Oehler, B Oeyen, A Olivas, E O’Sullivan, H Pandya, DV Pankova, N Park, GK Parker, EN Paudel, L Paul, C Pérez de los Heros, L Peters, J Peterson, S Philippen, S Pieper, A Pizzuto, M Plum, Y Popovych, A Porcelli, M Prado Rodriguez, B Pries, GT Przybylski, C Raab, J Rack-Helleis, A Raissi, M Rameez, K Rawlins, IC Rea, Z Rechav, A Rehman, P Reichherzer, R Reimann, G Renzi, E Resconi, S Reusch, W Rhode, M Richman, B Riedel, EJ Roberts, S Robertson, G Roellinghoff, M Rongen, C Rott, T Ruhe, D Ryckbosch, D Rysewyk Cantu, I Safa, J Saffer, D Salazar-Gallegos, P Sampathkumar, SE Sanchez Herrera, A Sandrock, M Santander, S Sarkar, S Sarkar, K Satalecka, M Schaufel, H Schieler, S Schindler, T Schmidt, A Schneider, J Schneider, FG Schröder, L Schumacher, G Schwefer, S Sclafani, D Seckel, S Seunarine, A Sharma, S Shefali, N Shimizu, M Silva, B Skrzypek, B Smithers, R Snihur, J Soedingrekso, A Sogaard, D Soldin, C Spannfellner, GM Spiczak, C Spiering, M Stamatikos, T Stanev, R Stein, J Stettner, T Stezelberger, T Stürwald, T Stuttard, GW Sullivan, I Taboada, S Ter-Antonyan, J Thwaites, S Tilav, F Tischbein, K Tollefson, C Tönnis, S Toscano, D Tosi, A Trettin, M Tselengidou, CF Tung, A Turcati, R Turcotte, JP Twagirayezu, B Ty, MA Unland Elorrieta, N Valtonen-Mattila, J Vandenbroucke, N van Eijndhoven, D Vannerom, J van Santen, J Veitch-Michaelis, S Verpoest, C Walck, W Wang, TB Watson, C Weaver, P Weigel, A Weindl, J Weldert, C Wendt, J Werthebach, M Weyrauch, N Whitehorn, CH Wiebusch, N Willey, DR Williams, M Wolf, G Wrede, J Wulff, XW Xu, JP Yanez, E Yildizci, S Yoshida, S Yu, T Yuan, Z Zhang, P Zhelnin, IceCube Collaboration, Adam Goldstein, Joshua Wood, for the Fermi Gamma-ray Burst Monitor

Dimits transition in three-dimensional ion-temperature-gradient turbulence

Cambridge University Press 88:5 (2022)

Authors:

Plamen Ivanov, Alexander A Schekochihin, William Dorland

Abstract:

We extend our previous work on the two-dimensional (2-D) Dimits transition in ion-scale turbulence (Ivanov et al., J. Plasma Phys., vol. 86, 2020, 855860502) to include variations along the magnetic field. We consider a three-field fluid model for the perturbations of electrostatic potential, ion temperature, and ion parallel flow in a constant-magnetic-curvature geometry without magnetic shear. It is derived in the cold-ion, long-wavelength asymptotic limit of the gyrokinetic theory. Just as in the 2-D model, a low-transport (Dimits) regime exists and is found to be dominated by a quasistatic staircase-like arrangement of strong zonal flows and zonal temperature. This zonal staircase is formed and maintained by a negative turbulent viscosity for the zonal flows. Unlike the 2-D model, the three-dimensional (3-D) one does not suffer from an unphysical blow up beyond the Dimits threshold where the staircase becomes nonlinearly unstable. Instead, a well-defined finite-amplitude saturated state is established. This qualitative difference between the 2-D and 3-D models is due to the appearance of small-scale ‘parasitic’ modes that exist only if we allow perturbations to vary along the magnetic field lines. These modes extract energy from the large-scale perturbations and provide an effective enhancement of large-scale thermal diffusion, thus aiding the energy transfer from large injection scales to small dissipative ones. We show that in our model, the parasitic modes always favour a zonal-flow-dominated state. In fact, a Dimits state with a zonal staircase is achieved regardless of the strength of the linear drive, provided the system is sufficiently extended along the magnetic field and sufficient parallel resolution is provided.

Metaplectic Geometrical Optics

ArXiv 2210.03188 (2022)

The Population of Viscosity- and Gravitational Wave-driven Supermassive Black Hole Binaries among Luminous Active Galactic Nuclei (vol 700, 1952, 2009)

ASTROPHYSICAL JOURNAL American Astronomical Society 937:2 (2022) ARTN 129

Authors:

Zoltan Haiman, Bence Kocsis, Kristen Menou

Abstract:

The following minor errors have been found in the published article. (Equation presented). These errors do not affect any of the figures, results, or conclusions of the paper.