CRPropa 3.2 -- an advanced framework for high-energy particle propagation in extragalactic and galactic spaces

(2022)

Authors:

Rafael Alves Batista, Julia Becker Tjus, Julien Dörner, Andrej Dundovic, Björn Eichmann, Antonius Frie, Christopher Heiter, Mario R Hoerbe, Karl-Heinz Kampert, Lukas Merten, Gero Müller, Patrick Reichherzer, Andrey Saveliev, Leander Schlegel, Günter Sigl, Arjen van Vliet, Tobias Winchen

Gyrokinetic electrostatic turbulence close to marginality in the Wendelstein 7-X stellarator

Physical Review E American Physical Society 106 (2022) L013202

Authors:

Alessandro Zocco, Linda Podavini, José Manuel Garcìa-Regaña, Michael Barnes, Felix I Parra, A Mishchenko, Per Helander

Abstract:

The transition from strong (fluidlike) to nearly marginal (Floquet-type) regimes of ion-temperature-gradient (ITG) driven turbulence is studied in the stellarator Wendelstein 7-X by means of numerical simulations. Close to marginality, extended (along magnetic field lines) linearly unstable modes are dominant, even in the presence of kinetic electrons, and provide a drive that results in finite turbulent transport. A total suppression of turbulence above the linear stability threshold of the ITG modes, commonly present in tokamaks and known as the “Dimits shift,” is not observed. We show that this is mostly due to the peculiar radial structure of marginal turbulence, which is more localized than in the fluid case and therefore less likely to be stabilized by shearing flows.

A novel approach to radially global gyrokinetic simulation using the flux-tube code stella

Journal of Computational Physics Elsevier 468 (2022) 111498

Authors:

Da St-Onge, Michael Barnes, Fi Parra

Abstract:

A novel approach to global gyrokinetic simulation is implemented in the flux-tube code stella. This is done by using a subsidiary expansion of the gyrokinetic equation in the perpendicular scale length of the turbulence, originally derived by Parra and Barnes [Plasma Phys. Controlled Fusion, 57 054003, 2015], which allows the use of Fourier basis functions while enabling the effect of radial profile variation to be included in a perturbative way. Radial variation of the magnetic geometry is included by utilizing a global extension of the Grad-Shafranov equation and the Miller equilibrium equations which is obtained through Taylor expansion. Radial boundary conditions that employ multiple flux-tube simulations are also developed, serving as a more physically motivated replacement to the conventional Dirichlet radial boundary conditions that are used in global simulation. It is shown that these new boundary conditions eliminate much of the numerical artefacts generated near the radial boundary when expressing a non-periodic function using a spectral basis. We then benchmark the new approach both linearly and non-linearly using a number of standard test cases.

Astrophysical gravitational-wave echoes from galactic nuclei

Monthly Notices of the Royal Astronomical Society Oxford University Press 515:3 (2022) 3299-3318

Authors:

László Gondán, Bence Kocsis

Abstract:

Galactic nuclei (GNs) are dense stellar environments abundant in gravitational-wave (GW) sources for the Laser Interferometer Gravitational-Wave Observatory (LIGO), Virgo, and Kamioka Gravitational Wave Detector (KAGRA). The GWs may be generated by stellar-mass black hole (BH) or neutron star mergers following gravitational bremsstrahlung, dynamical scattering encounters, Kozai–Lidov-type oscillations driven by the central supermassive black hole (SMBH), or gas-assisted mergers if present. In this paper, we examine a smoking gun signature to identify sources in GNs: the GWs scattered by the central SMBH. This produces a secondary signal, an astrophysical GW echo, which has a very similar time–frequency evolution as the primary signal but arrives after a time delay. We determine the amplitude and time-delay distribution of the GW echo as a function of source distance from the SMBH. Between ∼10 per cent and 90 per cent of the detectable echoes arrive within ∼(1--100)M6s after the primary GW for sources between 10 and 104 Schwarzschild radius, where M6=MSMBH,z/ (106M), and MSMBH, z is the observer-frame SMBH mass. The echo arrival times are systematically longer for high signal-to-noise ratio (SNR) primary GWs, where the GW echo rays are scattered at large deflection angles. In particular, ∼10 per cent--90 per cent of the distribution is shifted to ∼(5--1800)M6s for sources, where the lower limit of echo detection is 0.02 of the primary signal amplitude. We find that ∼5 per cent--30 per cent(⁠∼1 per cent--7 per cent⁠) of GW sources have an echo amplitude larger than 0.2–0.05 times the amplitude of the primary signal if the source distance from the SMBH is 50 (200) Schwarzschild radius. Non-detections can rule out that a GW source is near an SMBH.

A numerical study of stellar discs in galactic nuclei

ArXiv 2207.06398 (2022)

Authors:

Taras Panamarev, Bence Kocsis