Distribution functions for Galactic disc stellar populations in the presence of non-axisymmetric perturbations
Proceedings of the International Astronomical Union Cambridge University Press (CUP) 13:S334 (2017) 195-198
Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai-Lidov Effect
(2017)
Overview of recent physics results from MAST
Nuclear Fusion Institute of Physics 57:10 (2017) 102007
Abstract:
New results from MAST are presented that focus on validating models in order to extrapolate to future devices. Measurements during start-up experiments have shown how the bulk ion temperature rise scales with the square of the reconnecting field. During the current ramp-up, models are not able to correctly predict the current diffusion. Experiments have been performed looking at edge and core turbulence. At the edge, detailed studies have revealed how filament characteristics are responsible for determining the near and far scrape off layer density profiles. In the core the intrinsic rotation and electron scale turbulence have been measured. The role that the fast ion gradient has on redistributing fast ions through fishbone modes has led to a redesign of the neutral beam injector on MAST Upgrade. In H-mode the turbulence at the pedestal top has been shown to be consistent with being due to electron temperature gradient modes. A reconnection process appears to occur during edge localized modes (ELMs) and the number of filaments released determines the power profile at the divertor. Resonant magnetic perturbations can mitigate ELMs provided the edge peeling response is maximised and the core kink response minimised. The mitigation of intrinsic error fields with toroidal mode number n > 1 has been shown to be important for plasma performance.Isotropic–Nematic Phase Transitions in Gravitational Systems
The Astrophysical Journal American Astronomical Society 842:2 (2017) 90-90
Abstract:
We examine dense self-gravitating stellar systems dominated by a central potential, such as nuclear star clusters hosting a central supermassive black hole. Different dynamical properties of these systems evolve on vastly different timescales. In particular, the orbital-plane orientations are typically driven into internal thermodynamic equilibrium by vector resonant relaxation before the orbital eccentricities or semimajor axes relax. We show that the statistical mechanics of such systems exhibit a striking resemblance to liquid crystals, with analogous ordered-nematic and disordered-isotropic phases. The ordered phase consists of bodies orbiting in a disk in both directions, with the disk thickness depending on temperature, while the disordered phase corresponds to a nearly isotropic distribution of the orbit normals. We show that below a critical value of the total angular momentum, the system undergoes a first-order phase transition between the ordered and disordered phases. At the critical point the phase transition becomes second-order while for higher angular momenta there is a smooth crossover. We also find metastable equilibria containing two identical disks with mutual inclinations between $90^{\circ}$ and $180^\circ$.Migration and kinematics in growing disc galaxies with thin and thick discs
Monthly Notices of the Royal Astronomical Society Oxford University Press 470:3 (2017) 3685-3706