Observation of oscillatory radial electric field relaxation in a helical plasma
Physical Review Letters American Physical Society 118:18 (2017) 185002
Abstract:
Measurements of the relaxation of a zonal electrostatic potential perturbation in a non-axisymmetric magnetically confined plasma are presented. A sudden perturbation of the plasma equilibrium is induced by the injection of a cryogenic hydrogen pellet in the TJ-II stellarator, which is observed to be followed by a damped oscillation in the electrostatic potential. The waveform of the relaxation is consistent with theoretical calculations of zonal potential relaxation in a non-axisymmetric magnetic geometry. The turbulent transport properties of a magnetic confinement configuration are expected to depend on the features of the collisionless damping of zonal flows, of which the present letter is the first direct observation.The effect of tangential drifts on neoclassical transport in stellarators close to omnigeneity
Plasma Physics and Controlled Fusion IOP Publishing 59:5 (2017) 055014
Semianalytical calculation of the zonal-flow oscillation frequency in stellarators
Plasma Physics and Controlled Fusion IOP Publishing 59:6 (2017) 065005
Abstract:
Due to their capability to reduce turbulent transport in magnetized plasmas, understanding the dynamics of zonal flows is an important problem in the fusion program. Since the pioneering work by Rosenbluth and Hinton in axisymmetric tokamaks, it is known that studying the linear and collisionless relaxation of zonal flow perturbation s gives valuable information and physical insight. Recently, the problem has been investigated in stellarators and it has been found that in these devices the relaxation process exhibits a characteristic feature: a damped oscillation. The frequency of this oscillation might be a relevant parameter in the regulation of turbulent transport, and therefore its efficient and accurate calculation is important. Although an analytical expression can be derived for the frequency, its numerical evaluation is not simple and has not been exploited systematically so far. Here, a numerical method for its evaluation is considered, and the results are compared with those obtained by calculating the frequency from gyrokinetic simulations. This 'semianalytical' approach for the determination of the zonal-flow frequency is revealed to be accurate and faster than the one based on gyrokinetic simulations.Nuclear spirals in the inner Milky Way
Monthly Notices of the Royal Astronomical Society Oxford University Press 469:2 (2017) 2251-2262