Observation of oscillatory radial electric field relaxation in a helical plasma

Physical Review Letters American Physical Society 118:18 (2017) 185002

Authors:

JA Alonso, E Sanchez, I Calvo, JL Velasco, S Perfilov, A Chmyga, LG Eliseev, LI Krupnik, T Estrada, R Kleiber, KJ McCarthy, AV Melnikov, P Monreal, Felix I Parra Diaz, AI Zhezhera

Abstract:

Measurements of the relaxation of a zonal electrostatic potential perturbation in a non-axisymmetric magnetically confined plasma are presented. A sudden perturbation of the plasma equilibrium is induced by the injection of a cryogenic hydrogen pellet in the TJ-II stellarator, which is observed to be followed by a damped oscillation in the electrostatic potential. The waveform of the relaxation is consistent with theoretical calculations of zonal potential relaxation in a non-axisymmetric magnetic geometry. The turbulent transport properties of a magnetic confinement configuration are expected to depend on the features of the collisionless damping of zonal flows, of which the present letter is the first direct observation.

The effect of tangential drifts on neoclassical transport in stellarators close to omnigeneity

Plasma Physics and Controlled Fusion IOP Publishing 59:5 (2017) 055014

Authors:

Iván Calvo, Felix I Parra, José Luis Velasco, J Arturo Alonso

Semianalytical calculation of the zonal-flow oscillation frequency in stellarators

Plasma Physics and Controlled Fusion IOP Publishing 59:6 (2017) 065005

Authors:

P Monreal, E Sánchez, I Calvo, A Bustos, FelixI Parra, A Mishchenko, A Könies, R Kleiber

Abstract:

Due to their capability to reduce turbulent transport in magnetized plasmas, understanding the dynamics of zonal flows is an important problem in the fusion program. Since the pioneering work by Rosenbluth and Hinton in axisymmetric tokamaks, it is known that studying the linear and collisionless relaxation of zonal flow perturbation s gives valuable information and physical insight. Recently, the problem has been investigated in stellarators and it has been found that in these devices the relaxation process exhibits a characteristic feature: a damped oscillation. The frequency of this oscillation might be a relevant parameter in the regulation of turbulent transport, and therefore its efficient and accurate calculation is important. Although an analytical expression can be derived for the frequency, its numerical evaluation is not simple and has not been exploited systematically so far. Here, a numerical method for its evaluation is considered, and the results are compared with those obtained by calculating the frequency from gyrokinetic simulations. This 'semianalytical' approach for the determination of the zonal-flow frequency is revealed to be accurate and faster than the one based on gyrokinetic simulations.

Nuclear spirals in the inner Milky Way

Monthly Notices of the Royal Astronomical Society Oxford University Press 469:2 (2017) 2251-2262

Authors:

Matthew Ridley, MC Sormani, RG Treß, John Magorrian, RS Klessen

Abstract:

We use hydrodynamical simulations to construct a new coherent picture for the gas flow in the Central Molecular Zone (CMZ), the region of our Galaxy within R ≲ 500  pc. We relate connected structures observed in (l, b, v) data cubes of molecular tracers to nuclear spiral arms. These arise naturally in hydrodynamical simulations of barred galaxies, and are similar to those that can be seen in external galaxies such as NGC 4303 or NGC 1097. We discuss a face-on view of the CMZ, including the positions of several prominent molecular clouds, such as Sgr B2, the 20 and 50 km s−1 clouds, the polar arc, Bania Clump 2 and Sgr C. Our model is also consistent with the larger scale gas flow, up to R ≃ 3 kpc, thus providing a consistent picture of the entire Galactic bar region.

Nuclear Spirals in the inner Milky Way

(2017)

Authors:

Matthew Ridley, Mattia C Sormani, Robin G Treß, John Magorrian, Ralf S Klessen