Laboratory realization of relativistic pair-plasma beams

(2024)

Authors:

Charles Arrowsmith, Pascal Simon, Pablo Bilbao, Archie Bott, Stephane Burger, Hui Chen, Filipe Cruz, Tristan Davenne, Ilias Efthymiopoulos, Dustin Froula, Alice Marie Goillot, Jon Tomas Gudmundsson, Dan Haberberger, Jonathan Halliday, Thomas Hodge, Brian Huffman, Sam Iaquinta, Francesco Miniati, Brian Reville, Subir Sarkar, Alexander Schekochihin, Luis Silva, Simpson, Vasiliki Stergiou, Raoul Trines, Thibault Vieu, Nikolaos Charitonidis, Robert Bingham, Gianluca Gregori

Proton imaging of high-energy-density laboratory plasmas

Reviews of Modern Physics American Physical Society 95:4 (2023) 045007

Authors:

Derek B Schaeffer, Archie FA Bott, Marco Borghesi, Kirk A Flippo, William Fox, Julian Fuchs, Chikang Li, Fredrick H Séguin, Hye-Sook Park, Petros Tzeferacos, Louise Willingale

Abstract:

Proton imaging has become a key diagnostic for measuring electromagnetic fields in high-energy-density (HED) laboratory plasmas. Compared to other techniques for diagnosing fields, proton imaging is a measurement that can simultaneously offer high spatial and temporal resolution and the ability to distinguish between electric and magnetic fields without the protons perturbing the plasma of interest. Consequently, proton imaging has been used in a wide range of HED experiments, from inertial-confinement fusion to laboratory astrophysics. An overview is provided on the state of the art of proton imaging, including a discussion of experimental considerations like proton sources and detectors, the theory of proton-imaging analysis, and a survey of experimental results demonstrating the breadth of applications. Topics at the frontiers of proton-imaging development are also described, along with an outlook on the future of the field.

Intermittency of density fluctuations and zonal-flow generation in MAST edge plasmas

Journal of Plasma Physics Cambridge University Press 89:6 (2023) 905890614

Authors:

Alsu Sladkomedova, Istvan Cziegler, Anthony R Field, Alexander Schekochihin, D Dunai, Plamen G Ivanov

Abstract:

The properties of the edge ion-scale turbulence are studied using the beam emission spectroscopy (BES) diagnostic on MAST. Evidence of the formation of large-scale high-amplitude coherent structures, filamentary density blobs and holes, 2–4 cm inside the plasma separatrix is presented. Measurements of radial velocity and skewness of the density fluctuations indicate that density holes propagate radially inwards, with the skewness profile peaking at 7–10 cm inside the separatrix. Poloidal velocities of the density fluctuations measured using cross-correlation time delay estimation (CCTDE) are found to exhibit an intermittent behaviour. Zonal-flow analysis reveals the presence of poloidally symmetric coherent oscillations – low-frequency (LF) zonal flows and geodesic acoustic modes (GAM). Shearing rates of the observed zonal flows are found to be comparable to the turbulence decorrelation rate. The observed bursts in density-fluctuation power are followed by quiescent periods with a transient increase in the power of sheared flows. Three-wave interactions between broadband turbulence and a GAM are illustrated using the autobispectral technique. It is shown that the zonal flows and the density-fluctuation field are nonlinearly coupled and LF zonal flows mediate the energy transfer from high- to low-frequency density fluctuations.

Kinetic simulations and gamma-ray signatures of Klein–Nishina relativistic magnetic reconnection

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 527:4 (2023) 11587-11626

Authors:

J Mehlhaff, G Werner, B Cerutti, D Uzdensky, M Begelman

Abstract:

ABSTRACT Black hole and neutron star environments often comprise collisionless plasmas immersed in strong magnetic fields and intense baths of low-frequency radiation. In such conditions, relativistic magnetic reconnection can tap the magnetic field energy, accelerating high-energy particles that rapidly cool by inverse Compton (IC) scattering the dense photon background. At the highest particle energies reached in bright gamma-ray sources, IC scattering can stray into the Klein–Nishina regime. Here, the Comptonized photons exceed pair-production threshold with the radiation background and may thus return their energy to the reconnecting plasma as fresh electron–positron pairs. To reliably characterize observable signatures of such Klein–Nishina reconnection, in this work, we present first-principles particle-in-cell simulations of pair-plasma relativistic reconnection coupled to Klein–Nishina and pair-production physics. The simulations show substantial differences between the observable signatures of Klein–Nishina reconnection and reconnection coupled only to low-energy Thomson IC cooling (without pair production). The latter regime exhibits strong harder-when-brighter behaviour; the former involves a stable spectral shape independent of overall brightness. This spectral stability is reminiscent of flat-spectrum radio quasar (FSRQ) GeV high states, furnishing evidence that Klein–Nishina radiative physics operates in FSRQs. The simulated Klein–Nishina reconnection pair yield spans from low to order-unity and follows an exponential scaling law in a single governing parameter. Pushing this parameter beyond its range studied here might give way to a copious pair-creation regime. Besides FSRQs, we discuss potential applications to accreting black hole X-ray binaries, the M87* magnetosphere, and gamma-ray binaries.

Disc Novae: Thermodynamics of Gas Assisted Binary Black Hole Formation in AGN Discs

(2023)

Authors:

Henry Whitehead, Connar Rowan, Tjarda Boekholt, Bence Kocsis