Modelling the Galaxy for Gaia

European Space Agency, (Special Publication) ESA SP (2005) 89-95

Abstract:

Techniques for the construction of dynamical Galaxy models should be considered essential infrastructure that should be put in place before Gaia flies. Three possible modelling techniques are discussed. Although one of these seems to have significantly more potential than the other two, at this stage work should be done on all three. A major effort is needed to decide how to make a model consistent with a catalogue such as that which Gaia will produce. Given the complexity of the problem, it is argued that a hierarchy of models should be constructed, of ever increasing complexity and quality of fit to the data. The potential that resonances and tidal streams have to indicate how a model should be refined is briefly discussed.

Modelling the chromosphere and transition region of epsilon Eri (K2 V)

Monthly Notices of the Royal Astronomical Society 361 (2005) 1102-1120

Authors:

C Jordan, Sim, S.A.

Regularized orbit models unveiling the stellar structure and dark matter halo of the Coma elliptical NGC 4807

Monthly Notices of the Royal Astronomical Society 360:4 (2005) 1355-1372

Authors:

J Thomas, RP Saglia, R Bender, D Thomas, K Gebhardt, J Magorrian, EM Corsini, G Wegner

Abstract:

This is the second in a series of papers dedicated to unveiling the mass structure and orbital content of a sample of flattened early-type galaxies in the Coma cluster. The ability of our orbit libraries to reconstruct internal stellar motions and the mass composition of a typical elliptical in the sample is investigated by means of Monte Carlo simulations of isotropic rotator models. The simulations allow a determination of the optimal amount of regularization needed in the orbit superpositions. It is shown that under realistic observational conditions and with the appropriate regularization, internal velocity moments can be reconstructed to an accuracy of ≈15 per cent; the same accuracy can be achieved for the circular velocity and dark matter fraction. In contrast, the flattening of the halo remains unconstrained. Regularized orbit superpositions are applied to a first galaxy in our sample, NGC 4807, for which stellar kinematical observations extend to 3 r eff. The galaxy seems dark-matter dominated outside r > 2 r eff. Logarithmic dark matter potentials are consistent with the data, as well as NFW profiles, mimicking logarithmic potentials over the observationally sampled radial range. In both cases, the derived stellar mass-to-light ratio Υ agrees well with independently obtained mass-to-light ratios from stellar population analysis. The achieved accuracy is ΔΥ ≈ 0.5. Kinematically, NGC 4807 is characterized by mild radial anisotropy outside r > 0.5 r eff, becoming isotropic towards the centre. Our orbit models hint at either a distinct stellar component or weak triaxiality in the outer parts of the galaxy. © 2005 RAS.

Nuclear properties of nearby spiral galaxies from nubble Space Telescope NICMOS imaging and STIS spectroscopy

Astronomical Journal 130:1 (2005) 73-83

Authors:

MA Hughes, D Axon, J Atkinson, A Alonso-Herrero, C Scarlata, A Marconi, D Batcheldor, J Binney, A Capetti, CM Carollo, L Dressel, J Gerssen, D Macchetto, W Maciejewski, M Merrifield, M Ruiz, W Sparks, M Stiavelli, Z Tsvetanov

Abstract:

We investigate the central regions of 23 spiral galaxies using Space Telescope Imaging Spectrograph (STIS) spectroscopy and archival Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) imaging. The sample is taken from our program to determine the masses of central massive black holes (MBHs) in 54 nearby spiral galaxies. Stars are likely to contribute significantly to any dynamical central mass concentration that we find in our MBH program, and this paper is part of a series to investigate the nuclear properties of these galaxies. We use the Nuker law to fit surface brightness profiles, derived from the NICMOS images, to look for nuclear star clusters and find possible extended sources in three of the 23 galaxies studied (13%). The fact that this fraction is lower than that inferred from optical Bubble Space Telescope studies is probably due to the greater spatial resolution of those studies. Using R - H and J - H colors and equivalent widths of Hα emission (from the STIS spectra), we investigate the nature of the stellar population with evolutionary models. Under the assumption of hot stars ionizing the gas, as opposed to a weak active galactic nucleus (AGN), we find that there are young stellar populations (∼ 10-20 Myr); however, these data do not allow us to determine what percentage of the total nuclear stellar population they form. In addition, in an attempt to find any unknown AGN, we use [N II] and [S II] line flux ratios (relative to Hα) and find tentative evidence for weak AGNs in NGC 1300 and NGC 4536. © 2005. The American Astronomical Society. All rights reserved.

Modified Newtonian Dynamics in the Milky Way

ArXiv astro-ph/0506723 (2005)

Authors:

B Famaey, J Binney

Abstract:

Both microlensing surveys and radio-frequency observations of gas flow imply that the inner Milky Way is completely dominated by baryons, contrary to the predictions of standard cold dark matter (CDM) cosmology. We investigate the predictions of the Modified Newtonian Dynamics (MOND) formula for the Galaxy given the measured baryon distribution. Satisfactory fits to the observationally determined terminal-velocity curve are obtained for different choices of the MOND's interpolating function mu(x). However, with simple analytical forms of mu(x), the local circular speed v_c(R_0) can be as large as 220 km/s only for values of the parameter a_0 that are excluded by observations of NGC 3198. Only a numerically specified interpolating function can produce v_c(R_0)=220 km/s, which is therefore an upper limit in MOND, while the asymptotic velocity is predicted to be v_c(infty)=170+-5 km/s. The data are probably not consistent with the functional form of mu(x) that has been explored as a toy model in the framework of Bekenstein's covariant theory of gravity.