The centers of early-type galaxies with Hubble Space Telescope. V. New WFPC2 photometry
Astronomical Journal 129:5 (2005) 2138-2185
Abstract:
We present observations of 77 early-type galaxies imaged with the PC1 CCD of the Hubble Space Telescope (HST) WFPC2. "Nuker-law" parametric fits to the surface brightness profiles are used to classify the central structure into "core" or "power-law" forms. Core galaxies are typically rounder than power-law galaxies. Nearly all power-law galaxies with central ellipticities ε ≥ 0.3 have stellar disks, implying that disks are present in power-law galaxies with ε < 0.3 but are not visible because of unfavorable geometry. A few low-luminosity flattened core galaxies also have disks; these may be transition forms from power-law galaxies to more luminous core galaxies, which lack disks. Several core galaxies have strong isophote twists interior to their break radii, although power-law galaxies have interior twists of similar physical significance when the photometric perturbations implied by the twists are evaluated. Central color gradients are typically consistent with the envelope gradients; core galaxies have somewhat weaker color gradients than power-law galaxies. Nuclei are found in 29% of the core galaxies and 60% of the power-law galaxies. Nuclei are typically bluer than the surrounding galaxy. While some nuclei are associated with active galactic nuclei (AGNs), just as many are not; conversely, not all galaxies known to have a low-level AGN exhibit detectable nuclei in the broadband filters. NGC 4073 and 4382 are found to have central minima in their intrinsic starlight distributions; NGC 4382 resembles the double nucleus of M31. In general, the peak brightness location is coincident with the photocenter of the core to a typical physical scale of < 1 pc. Five galaxies, however, have centers significantly displaced from their surrounding cores; these may be unresolved asymmetric double nuclei. Finally, as noted by previous authors, central dust is visible in about half of the galaxies. The presence and strength of dust correlates with nuclear emission; thus, dust may outline gas that is falling into the central black hole. The prevalence of dust and its morphology suggest that dust clouds form, settle to the center, and disappear repeatedly on ∼ 108 yr timescales. We discuss the hypothesis that cores are created by the decay of a massive black hole binary formed in a merger. Apart from their brightness profiles, there are no strong differences between core galaxies and power-law galaxies that demand this scenario; however, the rounder shapes of core, their lack of disks, and their reduced color gradients may be consistent with it. © 2005. The American Astronomical Society. All rights reserved.Integral Field Spectroscopy of 23 Spiral Bulges
ArXiv astro-ph/0504660 (2005)
Abstract:
We have obtained Integral Field Spectroscopy for 23 spiral bulges using INTEGRAL on the William Herschel Telescope and SPIRAL on the Anglo-Australian Telescope. This is the first 2D survey directed solely at the bulges of spiral galaxies. Eleven galaxies of the sample do not have previous measurements of the stellar velocity dispersion (sigma*). These data are designed to complement our Space Telescope Imaging Spectrograph program for estimating black hole masses in the range 10^6-10^8M_sun using gas kinematics from nucleated disks. These observations will serve to derive the stellar dynamical bulge properties using the traditional Mgb and CaII triplets. We use both Cross Correlation and Maximum Penalized Likelihood to determine projected sigma* in these systems and present radial velocity fields, major axis rotation curves, curves of growth and sigma* fields. Using the Cross Correlation to extract the low order 2D stellar dynamics we generally see coherent radial rotation and irregular velocity dispersion fields suggesting that sigma* is a non-trivial parameter to estimate.Regularized orbit models unveiling the stellar structure and dark matter halo of the Coma elliptical NGC 4807
(2005)
Can Virialization Shocks Be Detected around Galaxy Clusters through the Sunyaev-Zel’dovich Effect?
The Astrophysical Journal American Astronomical Society 623:2 (2005) 632-649
Rotation and anisotropy of galaxies revisited
ArXiv astro-ph/0504387 (2005)