The structure and dynamics of the outer atmosphere of epsilon Eri
IAU SYMP 2004:219 (2004) 254-258
Abstract:
We present results from our study of the active dwarf is an element of Eri (K2 V) based on ultraviolet spectra recorded with the Space Telescope Imaging Spectrograph and the Far Ultraviolet Spectroscopic Explorer. A combination of simple theoretical arguments and observational constraints derived from measured line fluxes are used to deduce new information about the structure of the upper transition region/corona. The area filling factor of emitting material is determined in the upper atmosphere as a function of temperature. This provides new constraints on how the magnetic field might spread out in the atmosphere of an active main sequence star. Measured emission line widths are used, together with a new semi-empirical model of the atmosphere, to place limits on the energy fluxes carried by MHD waves. These are compared with estimates of the energy input required to support the combined radiative/conductive losses in the upper atmosphere. It is shown that, in principle, waves which propagate at the Alfven speed could provide sufficient energy to heat the corona.Turbulent energy transport in nonradiative accretion flows
ASTROPHYSICAL JOURNAL 600:2 (2004) 865-871
Viscous shear instability in weakly magnetized, dilute plasmas
ASTROPHYSICAL JOURNAL 616:2 (2004) 857-864
Structural stability of cooling flows
ArXiv astro-ph/0312658 (2003)