Study of a Hall thruster discharge with an intermediate electrode
39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2003)
Abstract:
An axial model for a two-stage discharge with an electron-emissive electrode is further examined. Scaling laws are derived and help to understand two-stage physics. Efficiency gains are obtained when the second-stage is placed in the upstream part of the acceleration region and the first and two stage voltages are comparable. A parametric study to determine the best position and voltage of the intermediate electrode is carried out. © 2003 by The Authors.Discreteness effects in cosmological N-body simulations
ArXiv astro-ph/0311155 (2003)
Abstract:
An estimate of the convergence radius of a simulated CDM halo is obtained under the assumption that the peak phase-space density in the system is set by discreteness effects that operate prior to relaxation. The predicted convergence radii are approximately a factor 2 larger than those estimated for numerical convergence studies. A toy model is used to study the formation of sheets of the cosmic web, from which DM haloes form later. This model demonstrates the interplay between phase mixing and violent relaxation that must also be characteristic of spherical collapse. In the limit that sheets contain arbitrarily many particles, it seems that power-law profiles are established in both distance and energy. When only a finite number of particles is employed, relaxation is prematurely terminated and the power laws are broken. In a given simulation, the sheets with the highest peak phase-space densities are those that form from the longest waves. Hence simulations with little small-scale power are expected to form the cuspiest haloes.Central DM density cuspiness in LSB's: a stellar kinematics approach
(2003)
Kinematics of 10 early-type galaxies from Hubble Space Telescope and ground-based spectroscopy
Astrophysical Journal 596:2 I (2003) 903-929
Abstract:
We present stellar kinematics for a sample of 10 early-type galaxies observed using the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope and the Modular Spectrograph on the MDM Observatory 2.4 m telescope. These observations are a part of an ongoing program to understand the coevolution of supermassive black holes and their host galaxies. Our spectral ranges include either the calcium triplet absorption lines at 8498, 8542, and 8662 Åor the Mg b absorption at 5175 Å. The lines are used to derive line-of-sight velocity distributions (LOSVDs) of the stars using a maximum penalized likelihood method. We use Gauss-Hermite polynomials to parameterize the LOSVDs and find predominantly negative h4 values (boxy distributions) in the central regions of our galaxies. One galaxy, NGC 4697, has significantly positive central h4 (high tail weight). The majority of galaxies have a central velocity dispersion excess in the STIS kinematics over ground-based velocity dispersions. The galaxies with the strongest rotational support, as quantified with vmax/σSTIS have the smallest dispersion excess at STIS resolution. The best-fitting, general, axisymmetric dynamical models (described in a companion paper) require black holes in all cases, with masses ranging from 106.5 to 10 9.3 M⊙. We replot these updated masses on the M BH-σ relation and show that the fit to only these 10 galaxies has a slope consistent with the fits to larger samples. The greatest outlier is NGC 2778, a dwarf elliptical with relatively poorly constrained black hole mass. The two best candidates for pseudobulges, NGC 3384 and NGC 7457, do not deviate significantly from the established relation between MBH and σ. Neither do the three galaxies that show the most evidence of a recent merger, NGC 3608, NGC 4473, and NGC 4697.Cooling Flows or Heating Flows?
ArXiv astro-ph/0310222 (2003)