Two-body relaxation in modified Newtonian dynamics

Monthly Notices of the Royal Astronomical Society 351:1 (2004) 285-291

Authors:

L Ciotti, J Binney

Abstract:

A naive extension to modified Newtonian dynamics (MOND) of the standard computation of the two-body relaxation time t2b implies that 2b is comparable to the crossing time regardless of the number W of stars in the system. This computation is questionable in view of the non-linearity of MOND's field equation. A non-standard approach to the calculation of t2b is developed that can be extended to MOND whenever discreteness noise generates force fluctuations that are small compared to the mean-field force. It is shown that this approach yields standard Newtonian results for systems in which the mean density profile is either plane-parallel or spherical. In the plane-parallel case, we find that in the deep-MOND regime t2b scales with N as in the Newtonian case, but is shorter by the square of the factor by which MOND enhances the gravitational force over its Newtonian value for the same system. Near the centre of a spherical system that is in the deep-MOND regime, we show that the fluctuating component of the gravitational force is never small compared to the mean-field force; this conclusion surprisingly even applies to systems with a density cusp that keeps the mean-field force constant to arbitrarily small radius, and suggests that a cuspy centre can never be in the deep-MOND regime. Application of these results to dwarf galaxies and groups and clusters of galaxies reveals that in MOND luminosity segregation should be far advanced in groups and clusters of galaxies, two-body relaxation should have substantially modified the density profiles of galaxy groups, while objects with masses in excess of ∼10 M⊙ should have spiralled to the centres of dwarf galaxies.

Mapping stationary axisymmetric phase-space distribution functions by orbit libraries

(2004)

Authors:

J Thomas, RP Saglia, R Bender, D Thomas, K Gebhardt, J Magorrian, D Richstone

Black Hole Mass Determinations From Orbit Superposition Models are Reliable

(2004)

Authors:

Douglas Richstone, Karl Gebhardt, Monique Aller, Ralf Bender, Gary Bower, Alan Dressler, SM Faber, Alexei V Filippenko, Richard Green, Luis C Ho, John Kormendy, Tod R Lauer, John Magorrian, Jason Pinkney, Christos Siopis, Scott Tremaine

Two-body relaxation in modified Newtonian dynamics

ArXiv astro-ph/0403020 (2004)

Authors:

L Ciotti, J Binney

Abstract:

A naive extension to MOND of the standard computation of the two-body relaxation time Tb implies that Tb is comparable to the crossing time regardless of the number N of stars in the system. This computation is questionable in view of the non-linearity of MOND's field equation. A non-standard approach to the calculation of Tb is developed that can be extended to MOND whenever discreteness noise generates force fluctuations that are small compared to the mean-field force. It is shown that this approach yields standard Newtonian results for systems in which the mean density profile is either plane-parallel or spherical. In the plane-parallel case we find that in the deep-MOND regime Tbb scales with N as in the Newtonian case, but is shorter by the square of the factor by which MOND enhances the gravitational force over its Newtonian value for the same system. Application of these results to dwarf galaxies and groups and clusters of galaxies reveals that in MOND luminosity segregation should be far advanced in groups and clusters of galaxies, two body relaxation should have substantially modified the density profiles of galaxy groups, while objects with masses in excess of ~10M_sun should have spiralled to the centres of dwarf galaxies.(Abridged)

Evolution of massive and magnetized protoplanetary disks

(2004)

Authors:

Sebastien Fromang, Caroline Terquem, Steven A Balbus, Jean-Pierre De Villiers