AGN and Cooling Flows

ArXiv astro-ph/0103398 (2001)

Abstract:

For two decades the steady-state cooling-flow model has dominated the literature of cluster and elliptical-galaxy X-ray sources. For ten years this model has been in severe difficulty from a theoretical point of view, and it is now coming under increasing pressure observationally. For two decades the steady-state cooling-flow model has dominated the literature of cluster and elliptical-galaxy X-ray sources. For ten years this model has been in severe difficulty from a theoretical point of view, and it is now coming under increasing pressure observationally. A small number of enthusiasts have argued for a radically different interpretation of the data, but had little impact on prevailing opinion because the unsteady heating picture that they advocate is extremely hard to work out in detail. Here I explain why it is difficult to extract robust observational predictions from the heating picture. Major problems include the variability of the sources, the different ways in which a bi-polar flow can impact on X-ray emission, the weakness of synchrotron emission from sub-relativistic flows, and the sensitivity of synchrotron emission to a magnetic field that is probably highly localized.

Evidence of a supermassive black hole in the galaxy NGC 1023 from the nuclear stellar dynamics

Astrophysical Journal 550:1 PART 1 (2001) 75-86

Authors:

GA Bower, RF Green, R Bender, K Gebhardt, TR Lauer, J Magorrian, DO Richstone, A Danks, T Gull, J Hutchings, C Joseph, ME Kaiser, D Weistrop, B Woodgate, C Nelson, EM Malumuth

Abstract:

We analyze the nuclear stellar dynamics of the SBO galaxy NGC 1023, utilizing observational data both from the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope and from the ground. The stellar kinematics measured from these long-slit spectra show rapid rotation (V ≈ 70 km s-1 at a distance of O″. 1 = 4.9 pc from the nucleus) and increasing velocity dispersion toward the nucleus (where σ = 295 ± 30 km s-1). We model the observed stellar kinematics assuming an axisymmetric mass distribution with both two and three integrals of motion. Both modeling techniques point to the presence of a central dark compact mass (which presumably is a supermassive black hole) with confidence greater than 99%. The isotropic two-integral models yield a best-fitting black hole mass of (6.0 ± 1.4) x 107 M and mass-to-light ratio (M/LV) of 5.38 ± 0.08, and the goodness of fit (χ2) is insensitive to reasonable values for the galaxy's inclination. The three-integral models, which nonparametrically fit the observed line-of-sight velocity distribution as a function of position in the galaxy, suggest a black hole mass of (3.9 ± 0.4) x 107 M and M/LV of 5.56 ± 0.02 (internal errors), and the edge-on models are vastly superior fits over models at other inclinations. The internal dynamics in NGC 1023 as suggested by our best-fit three-integral model shows that the velocity distribution function at the nucleus is tangentially anisotropic, suggesting the presence of a nuclear stellar disk. The nuclear line-of-sight velocity distribution has enhanced wings at velocities ≥ 600 km s-1 from systemic, suggesting that perhaps we have detected a group of stars very close to the central dark mass.

The dark matter problem in disc galaxies

Monthly Notices of the Royal Astronomical Society 321:3 (2001) 471-474

Authors:

J Binney, O Gerhard, J Silk

Abstract:

In the generic CDM cosmogony, dark-matter haloes emerge too lumpy and centrally concentrated to host observed galactic discs. Moreover, discs are predicted to be smaller than those observed. We argue that the resolution of these problems may lie with a combination of the effects of protogalactic discs, which would have had a mass comparable to that of the inner dark halo and be plausibly non-axisymmetric, and of massive galactic winds, which at early times may have carried off as many baryons as a galaxy now contains. A host of observational phenomena, from quasar absorption lines and intracluster gas through the G-dwarf problem, point to the existence of such winds. Dynamical interactions will homogenize and smooth the inner halo, and the observed disc will be the relic of a massive outflow. The inner halo expanded after absorbing energy and angular momentum from the ejected material. Observed discs formed at the very end of the galaxy formation process, after the halo had been reduced to a minor contributor to the central mass budget and strong radial streaming of the gas had died down.

Detection of magnetic dipole lines of Fe XII in the ultraviolet spectrum of the dwarf star epsilon Eri

Monthly Notices of the Royal Astronomical Society 322 (2001) L5-L9

Authors:

C Jordan, McMurry, A.D., Sim, S.A., Arulvel, M.

Convective and rotational stability of a dilute plasma

Astrophysical Journal 562:2 PART II (2001) 909-917

Abstract:

The stability of a dilute plasma to local convective and rotational disturbances is examined. A subthermal magnetic field and finite thermal conductivity along the field lines are included in the analysis. Stability criteria similar in form to the classical Høiland inequalities are found, but with angular velocity gradients replacing angular momentum gradients, and temperature gradients replacing entropy gradients. These criteria are indifferent to the properties of the magnetic field and to the magnitude of the thermal conductivity. Angular velocity gradients and temperature gradients are both free energy sources; it is not surprising that they are directly relevant to the stability of the gas. Magnetic fields and thermal conductivity provide the means by which these sources can be tapped. Previous studies have generally been based upon the classical Holland criteria, which are inappropriate for magnetized, dilute astrophysical plasmas. In sharp contrast to recent claims in the literature, the new stability criteria demonstrate that marginal flow stability is not a fundamental property of accreting plasmas thought to be associated with low-luminosity X-ray sources. © 2001. The American Astronomical Society. All rights reserved.