Galaxies with a central minimum in stellar luminosity density
Astronomical Journal 124:4 1762 (2002) 1975-1987
Abstract:
We used Hubble Space Telescope WFPC2 images to identify six early-type galaxies with surface brightness profiles that decrease inward over a limited range of radii near their centers. The inferred luminosity density profiles of these galaxies have local minima interior to their core break radii. NGC 3706 harbors a high surface brightness ring of starlight with radius ≈20 pc. Its central structure may be related to that in the double-nucleus galaxies M31 and NGC 4486B. NGC 4406 and NGC 6876 have nearly flat cores that, on close inspection, are centrally depressed. Colors for both galaxies imply that this is not due to dust absorption. The surface brightness distributions of both galaxies are consistent with stellar tori that are more diffuse than the sharply defined system in NGC 3706. The remaining three galaxies are the brightest cluster galaxies in A260, A347, and A3574. Color information is not available for these objects, but they strongly resemble NGC 4406 and NGC 6876 in their cores. The thin ring in NGC 3706 may have formed dissipatively. The five other galaxies resemble the endpoints of some simulations of the merging of two gas-free stellar systems, each harboring a massive nuclear black hole. In one version of this scenario, diffuse stellar tori are produced when stars initially bound to one black hole are tidally stripped away by the second black hole. Alternatively, some inward-decreasing surface brightness profiles may reflect the ejection of stars from a core during the hardening of the binary black hole created during the merger.Axisymmetric Dynamical Models of the Central Regions of Galaxies
(2002)
The slope of the black hole mass versus velocity dispersion correlation
Astrophysical Journal Letters 574:2 I (2002) 740-753
Abstract:
Observations of nearby galaxies reveal a strong correlation between the mass of the central dark object MBH and the velocity dispersion σ of the host galaxy, of the form log(MBH/M⊙) = α + βlog(σ/σ0); however, published estimates of the slope β span a wide range (3.75-5.3). Merritt & Ferrarese have argued that low slopes (≲4) arise because of neglect of random measurement errors in the dispersions and an incorrect choice for the dispersion of the Milky Way Galaxy. We show that these explanations and several others account for at most a small part of the slope range. Instead, the range of slopes arises mostly because of systematic differences in the velocity dispersions used by different groups for the same galaxies. The origin of these differences remains unclear, but we suggest that one significant component of the difference results from Ferrarese & Merritt's extrapolation of central velocity dispersions to re/8 (re is the effective radius) using an empirical formula. Another component may arise from dispersion-dependent systematic errors in the measurements. A new determination of the slope using 31 galaxies yields β= 4.02 ± 0.32, α = 8.13 ± 0.06 for σ 0 = 200 km s-1. The MBH-σ relation has an intrinsic dispersion in log MBH that is no larger than 0.25-0.3 dex and may be smaller if observational errors have been underestimated. In an appendix, we present a simple kinematic model for the velocity-dispersion profile of the Galactic bulge.Model of Radial Plasma-Wall Interactions in a Hall Thruster
American Institute of Aeronautics and Astronautics (AIAA) (2002)
Two-body relaxation in cosmological simulations
Monthly Notices of the Royal Astronomical Society 333:2 (2002) 378-382