Theory of Turbulent Accretion Disks

ArXiv astro-ph/0107408 (2001)

Abstract:

In low-mass disks, turbulent torques are probably the most important way of redistributing angular momentum. Here we present the theory of turbulent accretion disks. We show the molecular viscosity is far too small to account for the evolutionary timescale of disks, and we describe how turbulence may result in enhanced transport of (angular) momentum. We then turn to the magnetorotational instability, which thus far is the only mechanism that has been shown to initiate and sustain turbulence in disks. Finally, we present both the basis and the structure of alpha disk models.

Theory of Turbulent Accretion Disks

(2001)

Erratum: "A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion" (ApJ, 539, L13 [2000])

The Astrophysical Journal American Astronomical Society 555:1 (2001) l75-l75

Authors:

Karl Gebhardt, Ralf Bender, Gary Bower, Alan Dressler, SM Faber, Alexei V Filippenko, Richard Green, Carl Grillmair, Luis C Ho, John Kormendy, Tod R Lauer, John Magorrian, Jason Pinkney, Douglas Richstone, Scott Tremaine

Kinematics from spectroscopy with a wide slit: Detecting black holes in galaxy centres

Monthly Notices of the Royal Astronomical Society 323:4 (2001) 831-838

Authors:

W Maciejewski, J Binney

Abstract:

We consider long-slit emission-line spectra of galactic nuclei when the slit is wider than the instrumental point spread function, and the target has large velocity gradients. The finite width of the slit generates complex distributions of brightness at a given spatial point in the measured spectrum, which can be misinterpreted as coming from additional physically distinct nuclear components. We illustrate this phenomenon for the case of a thin disc in circular motion around a nuclear black hole (BH). We develop a new method for estimating the mass of the BH that exploits a feature in the spectrum at the outer edge of the BH's sphere of influence, and therefore gives higher sensitivity to BH detection than traditional methods. Moreover, with this method we can determine the BH mass and the inclination of the surrounding disc separately, whereas the traditional approach to BH estimation requires two long-slit spectra to be taken. We show that, with a given spectrograph, the detectability of a BH depends on the sense of rotation of the nuclear disc. We apply our method to estimate the BH mass in M84 from a publicly available spectrum, and recover a value four times lower than that published previously from the same data.

Two-Body Relaxation in Cosmological Simulations

ArXiv astro-ph/0105183 (2001)

Authors:

James Binney, Alexander Knebe

Abstract:

It is logically possible that early two-body relaxation in simulations of cosmological clustering influences the final structure of massive clusters. Convergence studies in which mass and spatial resolution are simultaneously increased, cannot eliminate this possibility. We test the importance of two-body relaxation in cosmological simulations with simulations in which there are two species of particles. The cases of two mass ratios, sqrt(2):1 and 4:1, are investigated. Simulations are run with both a spatially fixed softening length and adaptive softening using the publicly available codes GADGET and MLAPM, respectively. The effects of two-body relaxation are detected in both the density profiles of halos and the mass function of halos. The effects are more pronounced with a fixed softening length, but even in this case they are not so large as to suggest that results obtained with one mass species are significantly affected by two-body relaxation. The simulations that use adaptive softening are less affected by two-body relaxation and produce slightly higher central densities in the largest halos. They run about three times faster than the simulations that use a fixed softening length.