Dimits transition in three-dimensional ion-temperature-gradient turbulence
Abstract:
We extend our previous work on the two-dimensional (2-D) Dimits transition in ion-scale turbulence (Ivanov et al., J. Plasma Phys., vol. 86, 2020, 855860502) to include variations along the magnetic field. We consider a three-field fluid model for the perturbations of electrostatic potential, ion temperature, and ion parallel flow in a constant-magnetic-curvature geometry without magnetic shear. It is derived in the cold-ion, long-wavelength asymptotic limit of the gyrokinetic theory. Just as in the 2-D model, a low-transport (Dimits) regime exists and is found to be dominated by a quasistatic staircase-like arrangement of strong zonal flows and zonal temperature. This zonal staircase is formed and maintained by a negative turbulent viscosity for the zonal flows. Unlike the 2-D model, the three-dimensional (3-D) one does not suffer from an unphysical blow up beyond the Dimits threshold where the staircase becomes nonlinearly unstable. Instead, a well-defined finite-amplitude saturated state is established. This qualitative difference between the 2-D and 3-D models is due to the appearance of small-scale ‘parasitic’ modes that exist only if we allow perturbations to vary along the magnetic field lines. These modes extract energy from the large-scale perturbations and provide an effective enhancement of large-scale thermal diffusion, thus aiding the energy transfer from large injection scales to small dissipative ones. We show that in our model, the parasitic modes always favour a zonal-flow-dominated state. In fact, a Dimits state with a zonal staircase is achieved regardless of the strength of the linear drive, provided the system is sufficiently extended along the magnetic field and sufficient parallel resolution is provided.Inspirals from the innermost stable circular orbit of Kerr black holes: exact solutions and universal radial flow
Abstract:
We present exact solutions of test particle orbits spiraling inward from the innermost stable circular orbit (ISCO) of a Kerr black hole. Our results are valid for any allowed value of the angular momentum a parameter of the Kerr metric. These solutions are of considerable physical interest. In particular, the radial four-velocity of these orbits is both remarkably simple and, with the radial coordinate scaled by its ISCO value, universal in form, otherwise completely independent of the black hole spin.The high-energy probability distribution of accretion disc luminosity fluctuations
Abstract:
The probability density function of accretion disc luminosity fluctuations at high observed energies (i.e. energies larger than the peak temperature scale of the disc) is derived, under the assumption that the temperature fluctuations are lognormally distributed. Thin disc theory is used throughout. While lognormal temperature fluctuations would imply that the disc’s bolometric luminosity is also lognormal, the observed Wien-like luminosity behaves very differently. For example, in contrast to a lognormal distribution, the standard deviation of the derived distribution is not linearly proportional to its mean. This means that these systems do not follow a linear rms-flux relationship. Instead they exhibit very high intrinsic variance, and undergo what amounts to a phase transition, in which the mode of the distribution (in the statistical sense) ceases to exist, even for physically reasonable values of the underlying temperature variance. The moments of this distribution are derived using asymptotic expansion techniques. A result that is important for interpreting observations is that the theory predicts that the fractional variability of these disc systems should increase as the observed frequency is increased. The derived distribution will be of practical utility in quantitatively understanding the variability of disc systems observed at energies above their peak temperature scale, including X-ray observations of tidal disruption events.