NSTX-U theory, modeling and analysis results

Nuclear Fusion IOP Publishing 62:4 (2022) 042023

Authors:

W Guttenfelder, DJ Battaglia, E Belova, N Bertelli, MD Boyer, CS Chang, A Diallo, VN Duarte, F Ebrahimi, ED Emdee, N Ferraro, E Fredrickson, NN Gorelenkov, W Heidbrink, Z Ilhan, SM Kaye, E-H Kim, A Kleiner, F Laggner, M Lampert, JB Lestz, C Liu, D Liu, T Looby, N Mandell, R Maingi, JR Myra, S Munaretto, M Podestà, T Rafiq, R Raman, M Reinke, Y Ren, J Ruiz Ruiz, F Scotti, S Shiraiwa, V Soukhanovskii, P Vail, ZR Wang, W Wehner, AE White, RB White, BJQ Woods, J Yang, SJ Zweben, S Banerjee, R Barchfeld, RE Bell, JW Berkery, A Bhattacharjee, A Bierwage, GP Canal, X Chen, C Clauser, N Crocker, C Domier, T Evans, M Francisquez, K Gan, S Gerhardt, RJ Goldston, T Gray, A Hakim, G Hammett, S Jardin, R Kaita, B Koel, E Kolemen, S-H Ku, S Kubota, BP LeBlanc, F Levinton, JD Lore, N Luhmann, R Lunsford, R Maqueda, JE Menard, JH Nichols, M Ono, J-K Park, F Poli, T Rhodes, J Riquezes, D Russell, SA Sabbagh, E Schuster, DR Smith, D Stotler, B Stratton, K Tritz, W Wang, B Wirth

Overview of the TJ-II stellarator research programme towards model validation in fusion plasmas

Nuclear Fusion IOP Publishing 62:4 (2022) 042025

Authors:

C Hidalgo, E Ascasíbar, D Alegre, A Alonso, J Alonso, R Antón, A Baciero, J Baldzuhn, JM Barcala, L Barrera, E Blanco, J Botija, L Bueno, S Cabrera, A de Castro, E de la Cal, I Calvo, A Cappa, D Carralero, R Carrasco, B Carreras, R Castro, A de Castro, L Cebrián, AA Chmyga, M Chamorro, P Colino, F de Aragón, M Drabinskiy, J Duque, L Eliseev, FJ Escoto, T Estrada, M Ezzat, F Fraguas, D Fernández-Ruiz, JM Fontdecaba, A Gabriel, D Gadariya, L García, I García-Cortés, R García-Gómez, JM García-Regaña, A González-Jerez, G Grenfell, J Guasp, V Guisse, J Hernández-Sánchez, J Hernanz, A Jiménez-Denche, P Khabanov, N Kharchev, R Kleiber, F Koechl, T Kobayashi, G Kocsis, M Koepke, AS Kozachek, L Krupnik, F Lapayese, M Liniers, B Liu, D López-Bruna, B López-Miranda, U Losada, E de la Luna, SE Lysenko, F Martín-Díaz, G Martín-Gómez, E Maragkoudakis, J Martínez-Fernández, KJ McCarthy, F Medina, M Medrano, AV Melnikov, P Méndez, FJ Miguel, B van Milligen, A Molinero, G Motojima, S Mulas, Y Narushima, M Navarro, I Nedzelskiy, R Nuñez, M Ochando, S Ohshima, E Oyarzábal, JL de Pablos, F Palomares, N Panadero, F Papoušek, F Parra, C Pastor, I Pastor, A de la Peña, R Peralta, A Pereira, P Pons-Villalonga, H Polaino, AB Portas, E Poveda, FJ Ramos, GA Rattá, M Redondo, C Reynoso, E Rincón, C Rodríguez-Fernández, L Rodríguez-Rodrigo, A Ros, E Sánchez, J Sánchez, E Sánchez-Sarabia, S Satake, JA Sebastián, R Sharma, N Smith, C Silva, ER Solano, A Soleto, M Spolaore, T Szepesi, FL Tabarés, D Tafalla, H Takahashi, N Tamura, H Thienpondt, A Tolkachev, R Unamuno, J Varela, J Vega, JL Velasco, I Voldiner, S Yamamoto, the TJ-II Team

Time-resolved hadronic particle acceleration in the recurrent nova RS Ophiuchi.

Science (New York, N.Y.) 376:6588 (2022) 77-80

Authors:

H.E.S.S. Collaboration*†, F Aharonian, F Ait Benkhali, EO Angüner, H Ashkar, M Backes, V Baghmanyan, V Barbosa Martins, R Batzofin, Y Becherini, D Berge, K Bernlöhr, B Bi, M Böttcher, C Boisson, J Bolmont, M de Bony de Lavergne, M Breuhaus, R Brose, F Brun, S Caroff, S Casanova, M Cerruti, T Chand, A Chen, G Cotter, J Damascene Mbarubucyeye, A Djannati-Ataï, A Dmytriiev, V Doroshenko, C Duffy, K Egberts, J-P Ernenwein, S Fegan, K Feijen, A Fiasson, G Fichet de Clairfontaine, G Fontaine, M Füßling, S Funk, S Gabici, YA Gallant, S Ghafourizadeh, G Giavitto, L Giunti, D Glawion, JF Glicenstein, M-H Grondin, G Hermann, JA Hinton, M Hörbe, W Hofmann, C Hoischen, TL Holch, M Holler, D Horns, Zhiqiu Huang, M Jamrozy, F Jankowsky, I Jung-Richardt, E Kasai, K Katarzyński, U Katz, D Khangulyan, B Khélifi, S Klepser, W Kluźniak, Nu Komin, R Konno, K Kosack, D Kostunin, S Le Stum, A Lemière, M Lemoine-Goumard, J-P Lenain, F Leuschner, T Lohse, A Luashvili, I Lypova, J Mackey, D Malyshev, D Malyshev, V Marandon, P Marchegiani, A Marcowith, G Martí-Devesa, R Marx, G Maurin, M Meyer, A Mitchell, R Moderski, L Mohrmann, A Montanari, E Moulin, J Muller, T Murach, K Nakashima, M de Naurois, A Nayerhoda, J Niemiec, A Priyana Noel, P O'Brien, S Ohm, L Olivera-Nieto, E de Ona Wilhelmi, M Ostrowski, S Panny, M Panter, RD Parsons, G Peron, S Pita, V Poireau, DA Prokhorov, H Prokoph, G Pühlhofer, M Punch, A Quirrenbach, P Reichherzer, A Reimer, O Reimer, M Renaud, B Reville, F Rieger, G Rowell, B Rudak, H Rueda Ricarte, E Ruiz-Velasco, V Sahakian, S Sailer, H Salzmann, DA Sanchez, A Santangelo, M Sasaki, J Schäfer, F Schüssler, HM Schutte, U Schwanke, M Senniappan, JNS Shapopi, R Simoni, A Sinha, H Sol, A Specovius, S Spencer, Ł Stawarz, S Steinmassl, C Steppa, T Takahashi, T Tanaka, AM Taylor, R Terrier, C Thorpe-Morgan, M Tsirou, N Tsuji, R Tuffs, Y Uchiyama, T Unbehaun, C van Eldik, B van Soelen, J Veh, C Venter, J Vink, SJ Wagner, F Werner, R White, A Wierzcholska, Yu Wun Wong, A Yusafzai, M Zacharias, D Zargaryan, AA Zdziarski, A Zech, SJ Zhu, S Zouari, N Żywucka

Abstract:

Recurrent novae are repeating thermonuclear explosions in the outer layers of white dwarfs, due to the accretion of fresh material from a binary companion. The shock generated when ejected material slams into the companion star's wind can accelerate particles. We report very-high-energy (VHE; [Formula: see text]) gamma rays from the recurrent nova RS Ophiuchi, up to 1 month after its 2021 outburst, observed using the High Energy Stereoscopic System (H.E.S.S.). The temporal profile of VHE emission is similar to that of lower-energy giga-electron volt emission, indicating a common origin, with a 2-day delay in peak flux. These observations constrain models of time-dependent particle energization, favoring a hadronic emission scenario over the leptonic alternative. Shocks in dense winds provide favorable environments for efficient acceleration of cosmic rays to very high energies.

Self-consistent modelling of the Milky Way’s nuclear stellar disc

Monthly Notices of the Royal Astronomical Society Oxford University Press 512:2 (2022) 1857-1884

Authors:

Mattia C Sormani, Jason L Sanders, Tobias K Fritz, Leigh C Smith, Ortwin Gerhard, Rainer Schödel, Stephen Magorrian, Nadine Neumayer, Francisco Nogueras-Lara, Anja Feldmeier-Krause, Alessandra Mastrobuono-Battisti, Mathias Schultheis, Banafsheh Shahzamanian, Eugene Vasiliev, Ralf S Klessen, Philip Lucas, Dante Minniti

Abstract:

The nuclear stellar disc (NSD) is a flattened high-density stellar structure that dominates the gravitational field of the Milky Way at Galactocentric radius $30\, {\rm pc}\lesssim R\lesssim 300\, {\rm pc}$. We construct axisymmetric self-consistent equilibrium dynamical models of the NSD in which the distribution function is an analytic function of the action variables. We fit the models to the normalized kinematic distributions (line-of-sight velocities + VIRAC2 proper motions) of stars in the NSD survey of Fritz et al., taking the foreground contamination due to the Galactic Bar explicitly into account using an N-body model. The posterior marginalized probability distributions give a total mass of $M_{\rm NSD} = 10.5^{+1.1}_{-1.0} \times 10^8 \, \, \rm M_\odot$, roughly exponential radial and vertical scale lengths of $R_{\rm disc} = 88.6^{+9.2}_{-6.9} \, {\rm pc}$ and $H_{\rm disc}=28.4^{+5.5}_{-5.5} \, {\rm pc}$, respectively, and a velocity dispersion $\sigma \simeq 70\, {\rm km\, s^{-1}}$ that decreases with radius. We find that the assumption that the NSD is axisymmetric provides a good representation of the data. We quantify contamination from the Galactic Bar in the sample, which is substantial in most observed fields. Our models provide the full 6D (position + velocity) distribution function of the NSD, which can be used to generate predictions for future surveys. We make the models publicly available as part of the software package agama.

Extended electron tails in electrostatic microinstabilities and the nonadiabatic response of passing electrons

Plasma Physics and Controlled Fusion IOP Publishing 64:5 (2022) 055004

Authors:

Mr Hardman, Fi Parra, C Chong, T Adkins, Ms Anastopoulos-Tzanis, M Barnes, D Dickinson, Jf Parisi, H Wilson

Abstract:

Ion-gyroradius-scale microinstabilities typically have a frequency comparable to the ion transit frequency. Due to the small electron-to-ion mass ratio and the large electron transit frequency, it is conventionally assumed that passing electrons respond adiabatically in ion-gyroradius-scale modes. However, in gyrokinetic simulations of ion-gyroradius-scale modes in axisymmetric toroidal magnetic fields, the nonadiabatic response of passing electrons can drive the mode, and generate fluctuations in narrow radial layers, which may have consequences for turbulent transport in a variety of circumstances. In flux tube simulations, in the ballooning representation, these instabilities reveal themselves as modes with extended tails. The small electron-to-ion mass ratio limit of linear gyrokinetics for electrostatic instabilities is presented, in axisymmetric toroidal magnetic geometry, including the nonadiabatic response of passing electrons and associated narrow radial layers. This theory reveals the existence of ion-gyroradius-scale modes driven solely by the nonadiabatic passing electron response, and recovers the usual ion-gyroradius-scale modes driven by the response of ions and trapped electrons, where the nonadiabatic response of passing electrons is small. The collisionless and collisional limits of the theory are considered, demonstrating parallels in structure and physical processes to neoclassical transport theory. By examining initial-value simulations of the fastest-growing eigenmodes, the predictions for mass-ratio scaling are tested and verified numerically for a range of collision frequencies. Insight from the small electron-to-ion mass ratio theory may lead to a computationally efficient treatment of extended modes.