Time-resolved hadronic particle acceleration in the recurrent Nova RS Ophiuchi

(2022)

Authors:

HESS Collaboration, F Aharonian, F Ait Benkhali, EO Angüner, H Ashkar, M Backes, V Baghmanyan, V Barbosa Martins, R Batzofin, Y Becherini, D Berge, K Bernlöhr, B Bi, M Böttcher, C Boisson, J Bolmont, M de Bony de Lavergne, M Breuhaus, R Brose, F Brun, S Caroff, S Casanova, M Cerruti, T Chand, A Chen, G Cotter, J Damascene Mbarubucyeye, A Djannati-Ataï, A Dmytriiev, V Doroshenko, C Duffy, K Egberts, J-P Ernenwein, S Fegan, K Feijen, A Fiasson, G Fichet de Clairfontaine, G Fontaine, M Füßling, S Funk, S Gabici, YA Gallant, S Ghafourizadeh, G Giavitto, L Giunti, D Glawion, JF Glicenstein, M-H Grondin, G Hermann, JA Hinton, M Hörbe, W Hofmann, C Hoischen, TL Holch, M Holler, D Horns, Zhiqiu Huang, M Jamrozy, F Jankowsky, I Jung-Richardt, E Kasai, K Katarzyński, U Katz, D Khangulyan, B Khélifi, S Klepser, W Kluźniak, Nu Komin, R Konno, K Kosack, D Kostunin, S Le Stum, A Lemière, M Lemoine-Goumard, J-P Lenain, F Leuschner, T Lohse, A Luashvili, I Lypova, J Mackey, D Malyshev, D Malyshev, V Marandon, P Marchegiani, A Marcowith, G Martí-Devesa, R Marx, G Maurin, M Meyer, A Mitchell, R Moderski, L Mohrmann, A Montanari, E Moulin, J Muller, T Murach, K Nakashima, M de Naurois, A Nayerhoda, J Niemiec, A Priyana Noel, P O'Brien, S Ohm, L Olivera-Nieto, E de Ona Wilhelmi, M Ostrowski, S Panny, M Panter, RD Parsons, G Peron, S Pita, V Poireau, DA Prokhorov, H Prokoph, G Pühlhofer, M Punch, A Quirrenbach, P Reichherzer, A Reimer, O Reimer, M Renaud, B Reville, F Rieger, G Rowell, B Rudak, H Rueda Ricarte, E Ruiz-Velasco, V Sahakian, S Sailer, H Salzmann, DA Sanchez, A Santangelo, M Sasaki, J Schäfer, F Schüssler, HM Schutte, U Schwanke, M Senniappan, JNS Shapopi, R Simoni, A Sinha, H Sol, A Specovius, S Spencer, Ł Stawarz, S Steinmassl, C Steppa, T Takahashi, T Tanaka, AM Taylor, R Terrier, C Thorpe-Morgan, M Tsirou, N Tsuji, R Tuffs, Y Uchiyama, T Unbehaun, C van Eldik, B van Soelen, J Veh, C Venter, J Vink, SJ Wagner, F Werner, R White, A Wierzcholska, Yu Wun Wong, A Yusafzai, M Zacharias, D Zargaryan, AA Zdziarski, A Zech, SJ Zhu, S Zouari, N Żywucka

Black Hole Discs and Spheres in Galactic Nuclei -- Exploring the Landscape of Vector Resonant Relaxation Equilibria

(2022)

Authors:

Gergely Máthé, Ákos Szölgyén, Bence Kocsis

AT2019azh: an unusually long-lived, radio-bright thermal tidal disruption event

Monthly Notices of the Royal Astronomical Society Oxford University Press 511:4 (2022) 5328-5345

Authors:

Aj Goodwin, S van Velzen, Jca Miller-Jones, Andrew Mummery, Mf Bietenholz, A Wederfoort, E Hammerstein, C Bonnerot, J Hoffmann, L Yan

Abstract:

Tidal disruption events (TDEs) occur when a star is destroyed by a supermassive black hole at the centre of a galaxy, temporarily increasing the accretion rate on to the black hole and producing a bright flare across the electromagnetic spectrum. Radio observations of TDEs trace outflows and jets that may be produced. Radio detections of the outflows from TDEs are uncommon, with only about one-third of TDEs discovered to date having published radio detections. Here, we present over 2 yr of comprehensive, multiradio frequency monitoring observations of the TDE AT2019azh taken with the Very Large Array and MeerKAT radio telescopes from approximately 10 d pre-optical peak to 810 d post-optical peak. AT2019azh shows unusual radio emission for a thermal TDE, as it brightened very slowly over 2 yr, and showed fluctuations in the synchrotron energy index of the optically thin synchrotron emission from 450 d post-disruption. Based on the radio properties, we deduce that the outflow in this event is likely non-relativistic and could be explained by a spherical outflow arising from self-stream intersections or a mildly collimated outflow from accretion on to the supermassive black hole. This data set provides a significant contribution to the observational data base of outflows from TDEs, including the earliest radio detection of a non-relativistic TDE to date, relative to the optical discovery.

Search for high-energy neutrinos from ultraluminous infrared galaxies with icecube

The Astrophysical Journal American Astronomical Society 926 (2022) 59

Authors:

R Abbasi, M Ackermann, J Adams, Ja Aguilar, M Ahlers, M Ahrens, C Alispach, Alves AA Jr, Nm Amin, R An, K Andeen, T Anderson, G Anton, C Arguelles, Y Ashida, S Axani, X Bai, Av Balagopal, A Barbano, Sw Barwick, B Bastian, V Basu, S Baur, R Bay, Jj Beatty, K-H Becker, J Becker Tjus, C Bellenghi, S BenZvi, D Berley, E Bernardini, Dz Besson, G Binder, D Bindig, E Blaufuss, S Blot, M Boddenberg, F Bontempo, J Borowka, S Boser, O Botner, J Boettcher, E Bourbeau, F Bradascio, J Braun, S Bron, J Brostean-Kaiser, S Browne, A Burgman, Rt Burley

Abstract:

Ultraluminous infrared galaxies (ULIRGs) have infrared luminosities LIR ≥ 1012L⊙, making them the most luminous objects in the infrared sky. These dusty objects are generally powered by starbursts with star formation rates that exceed 100 M⊙ yr−1, possibly combined with a contribution from an active galactic nucleus. Such environments make ULIRGs plausible sources of astrophysical high-energy neutrinos, which can be observed by the IceCube Neutrino Observatory at the South Pole. We present a stacking search for high-energy neutrinos from a representative sample of 75 ULIRGs with redshift z ≤ 0.13 using 7.5 yr of IceCube data. The results are consistent with a background-only observation, yielding upper limits on the neutrino flux from these 75 ULIRGs. For an unbroken E−2.5 power-law spectrum, we report an upper limit on the stacked flux ${{\rm{\Phi }}}_{{\nu }_{\mu }+{\bar{\nu }}_{\mu }}^{90 \% }=3.24\times {10}^{-14}\,{\mathrm{TeV}}^{-1}\,{\mathrm{cm}}^{-2}\,{{\rm{s}}}^{-1}\,{(E/10\,\mathrm{TeV})}^{-2.5}$ at 90% confidence level. In addition, we constrain the contribution of the ULIRG source population to the observed diffuse astrophysical neutrino flux as well as model predictions.

Propagation of cosmic rays in plasmoids of AGN jets -- implications for multimessenger predictions

ArXiv 2202.01818 (2022)

Authors:

J Becker Tjus, M Hörbe, I Jaroschewski, P Reichherzer, W Rhode, M Schroller, F Schüssler