On a new formulation for energy transfer between convection and fast tides with application to giant planets and solar type stars

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 503:4 (2021) 5789-5806

Abstract:

All the studies of the interaction between tides and a convective flow assume that the large scale tides can be described as a mean shear flow which is damped by small scale fluctuating convective eddies. The convective Reynolds stress is calculated using mixing length theory, accounting for a sharp suppression of dissipation when the turnover timescale is larger than the tidal period. This yields tidal dissipation rates several orders of magnitude too small to account for the circularization periods of late–type binaries or the tidal dissipation factor of giant planets. Here, we argue that the above description is inconsistent, because fluctuations and mean flow should be identified based on the timescale, not on the spatial scale, on which they vary. Therefore, the standard picture should be reversed, with the fluctuations being the tidal oscillations and the mean shear flow provided by the largest convective eddies. We assume that energy is locally transferred from the tides to the convective flow. Using this assumption, we obtain values for the tidal Q factor of Jupiter and Saturn and for the circularization periods of PMS binaries in good agreement with observations. The timescales obtained with the equilibrium tide approximation are however still 40 times too large to account for the circularization periods of late–type binaries. For these systems, shear in the tachocline or at the base of the convective zone may be the main cause of tidal dissipation.

Eccentric black hole mergers in active galactic nuclei

Astrophysical Journal Letters IOP Publishing 907:1 (2021) L20

Authors:

Hiromichi Tagawa, Bence Kocsis, Zoltan Haiman, Imre Bartos, Kazuyuki Omukai, Johan Samsing

Abstract:

The astrophysical origin of gravitational wave transients is a timely open question in the wake of discoveries by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo. In active galactic nuclei (AGNs), binaries form and evolve efficiently by interaction with a dense population of stars and the gaseous AGN disk. Previous studies have shown that stellar-mass black hole (BH) mergers in such environments can explain the merger rate and the number of suspected hierarchical mergers observed by LIGO/Virgo. The binary eccentricity distribution can provide further information to distinguish between astrophysical models. Here we derive the eccentricity distribution of BH mergers in AGN disks. We find that eccentricity is mainly due to binary–single (BS) interactions, which lead to most BH mergers in AGN disks having a significant eccentricity at 0.01 Hz, detectable by the Laser Interferometer Space Antenna. If BS interactions occur in isotropic-3D directions, then 8%–30% of the mergers in AGN disks will have eccentricities at 10 Hz above e10 Hz ≳ 0.03, detectable by LIGO/Virgo/Kamioka Gravitational Wave Detector, while 5%–17% of mergers have e10 Hz ≥ 0.3. On the other hand, if BS interactions are confined to the AGN–disk plane due to torques from the disk, with 1–20 intermediate binary states during each interaction, or if BHs can migrate to ≲ 10−3 pc from the central supermassive BH, then 10%–70% of the mergers will be highly eccentric (e10 Hz ≥ 0.3), consistent with the possible high eccentricity in GW190521.

Observations of pressure anisotropy effects within semi-collisional magnetized plasma bubbles.

Nature communications 12:1 (2021) 334

Authors:

Er Tubman, As Joglekar, Afa Bott, M Borghesi, B Coleman, G Cooper, Cn Danson, P Durey, Jm Foster, P Graham, G Gregori, Et Gumbrell, Mp Hill, T Hodge, S Kar, Rj Kingham, M Read, Cp Ridgers, J Skidmore, C Spindloe, Agr Thomas, P Treadwell, S Wilson, L Willingale, Nc Woolsey

Abstract:

Magnetized plasma interactions are ubiquitous in astrophysical and laboratory plasmas. Various physical effects have been shown to be important within colliding plasma flows influenced by opposing magnetic fields, however, experimental verification of the mechanisms within the interaction region has remained elusive. Here we discuss a laser-plasma experiment whereby experimental results verify that Biermann battery generated magnetic fields are advected by Nernst flows and anisotropic pressure effects dominate these flows in a reconnection region. These fields are mapped using time-resolved proton probing in multiple directions. Various experimental, modelling and analytical techniques demonstrate the importance of anisotropic pressure in semi-collisional, high-β plasmas, causing a reduction in the magnitude of the reconnecting fields when compared to resistive processes. Anisotropic pressure dynamics are crucial in collisionless plasmas, but are often neglected in collisional plasmas. We show pressure anisotropy to be essential in maintaining the interaction layer, redistributing magnetic fields even for semi-collisional, high energy density physics (HEDP) regimes.

Tidally induced stellar oscillations: converting modelled oscillations excited by hot Jupiters into observables

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2021)

Authors:

Andrew Bunting, CAROLINE TERQUEM

Preparing for first diverted plasma operation in the ST40 high-field spherical tokamak

47th EPS Conference on Plasma Physics, EPS 2021 2021-June (2021) 681-684

Authors:

M Romanelli, S McNamara, P Buxton, O Asunta, J Varje, J Wood, C Marsden, J Bland, V Nemytov, P Thomas, M Gryaznevich, M Sertoli, B Vincent, S Sridhar, A Dnestrovsky, S Medvedev, V Drozdov, S Janhunen, J Sinha, T Bogaarts, G Rubino, P Innocenti, G Calabro, M Scarpari, P Fanelli, F Giorgetti, R Lombroni, S Kaye, A Diallo, W Guttenfelder, M Barnes, Y Zhang

Abstract:

The ST40 tokamak [1], built and operated by Tokamak Energy, has recently been upgraded with upper and lower divertors to enable double null diverted operations with up to 1MA plasma current and 2MW neutral beam heating. ST40 is a high field spherical tokamak (ST), BT=3T at R0=0.4m with a goal to extend the high field spherical tokamak physics basis. Crucially, transport and confinement in high field, high temperature STs will be explored in support to the design of next step STs [2]. Extensive modelling activities have been undertaken to prepare for the exploitation of ST40. A range of plasma equilibrium in double-null configuration have been designed along with detailed scenario modelling, including 1.5D transport simulations and 2D SOL modelling. Gyrokinetic analysis has been performed to assess the level of expected turbulent transport. Building upon the NSTX pedestal database the pedestal width and height in the high performance ST40 scenarios have been predicted. MHD stability analysis and beta limit have been assessed. ST40 will be initially operated in hydrogen with up to 1.5 MW NBI (0.8MW at 55kV and 0.7MW at 25kV). The heating systems will be upgraded in view of the follow up campaign in deuterium, with 2MW, 55kV NBI and around 1.6MW 105/140GHz ECRH. Careful analysis of the power deposited in the divertor during high performance operation has also been carried out.