Time-resolved turbulent dynamo in a laser plasma

Proceedings of the National Academy of Sciences National Academy of Sciences 118:11 (2021) e2015729118

Authors:

Afa Bott, P Tzeferacos, L Chen, Charlotte Palmer, A Rigby, Anthony Bell, R Bingham, A Birkel, C Graziani, Dh Froula, J Katz, M Koenig, Mw Kunz, Ck Li, J Meinecke, Francesco Miniati, R Petrasso, H-S Park, Ba Remington, B Reville, Js Ross, D Ryu, D Ryutov, F Séguin, Tg White, AA Schekochihin, Dq Lamb, G Gregori

Abstract:

Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas (Pm<1). However, the same framework proposes that the fluctuation dynamo should operate differently when Pm≳1, the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports an experiment that creates a laboratory Pm≳1 plasma dynamo. We provide a time-resolved characterization of the plasma’s evolution, measuring temperatures, densities, flow velocities, and magnetic fields, which allows us to explore various stages of the fluctuation dynamo’s operation on seed magnetic fields generated by the action of the Biermann-battery mechanism during the initial drive-laser target interaction. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude and saturate dynamically. It is shown that the initial growth of these fields occurs at a much greater rate than the turnover rate of the driving-scale stochastic motions. Our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized magnetohydrodynamics (MHD) simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems.

First and second-generation black hole and neutron star mergers in 2+2 quadruples: population statistics

(2021)

Authors:

Adrian S Hamers, Giacomo Fragione, Patrick Neunteufel, Bence Kocsis

The H.E.S.S. gravitational wave rapid follow-up program

Journal of Cosmology and Astroparticle Physics IOP Publishing 2021:03 (2021) 045

Authors:

Halim Ashkar, Francois Brun, Matthias Füßling, Clemens Hoischen, Stefan Ohm, Heike Prokoph, Patrick Reichherzer, Fabian Schüssler, Monica Seglar-Arroyo

A canonical transformation to eliminate resonant perturbations I

(2021)

Authors:

Barnabás Deme, Bence Kocsis

Mass-gap mergers in active galactic nuclei

Astrophysical Journal American Astronomical Society 908:2 (2021) 194

Authors:

Hiromichi Tagawa, Bence Kocsis, Zoltan Haiman, Imre Bartos, Kazuyuki Omukai, Johan Samsing

Abstract:

The recently discovered gravitational wave sources GW190521 and GW190814 have shown evidence of BH mergers with masses and spins outside of the range expected from isolated stellar evolution. These merging objects could have undergone previous mergers. Such hierarchical mergers are predicted to be frequent in active galactic nuclei (AGNs) disks, where binaries form and evolve efficiently by dynamical interactions and gaseous dissipation. Here we compare the properties of these observed events to the theoretical models of mergers in AGN disks, which are obtained by performing one-dimensional N-body simulations combined with semi-analytical prescriptions. The high BH masses in GW190521 are consistent with mergers of high-generation (high-g) BHs where the initial progenitor stars had high metallicity, 2g BHs if the original progenitors were metal-poor, or 1g BHs that had gained mass via super-Eddington accretion. Other measured properties related to spin parameters in GW190521 are also consistent with mergers in AGN disks. Furthermore, mergers in the lower mass gap or those with low mass ratio as found in GW190814 and GW190412 are also reproduced by mergers of 2g–1g or 1g–1g objects with significant accretion in AGN disks. Finally, due to gas accretion, the massive neutron star merger reported in GW190425 can be produced in an AGN disk.