Proposal of a micromagnetic standard problem for ferromagnetic resonance simulations

ArXiv arXiv (2016)

Authors:

Alexander A Baker, Marijan Beg, Gregory Ashton, Maximilian Albert, Dmitri Chernyshenko, Weiwei Wang, Shilei Zhang, Marc-Antonio Bisotti, Matteo Franchin, Chun L Lu, Robert Stamps, Thorsten Hesjedal, Hans Fangohr

Abstract:

Nowadays, micromagnetic simulations are a common tool for studying a wide range of different magnetic phenomena, including the ferromagnetic resonance. A technique for evaluating reliability and validity of different micromagnetic simulation tools is the simulation of proposed standard problems. We propose a new standard problem by providing a detailed specification and analysis of a sufficiently simple problem. By analyzing the magnetization dynamics in a thin permalloy square sample, triggered by a well defined excitation, we obtain the ferromagnetic resonance spectrum and identify the resonance modes via Fourier transform. Simulations are performed using both finite difference and finite element numerical methods, with OOMMF and Nmag simulators, respectively. We report the effects of initial conditions and simulation parameters on the character of the observed resonance modes for this standard problem. We provide detailed instructions and code to assist in using the results for evaluation of new simulator tools, and to help with numerical calculation of ferromagnetic resonance spectra and modes in general.

Chiral damping of magnetic domain walls

Nature Materials Springer Nature 15:3 (2016) 272-277

Authors:

Emilie Jué, CK Safeer, Marc Drouard, Alexandre Lopez, Paul Balint, Liliana Buda-Prejbeanu, Olivier Boulle, Stephane Auffret, Alain Schuhl, Aurelien Manchon, Ioan Mihai Miron, Gilles Gaudin

Atomic and electronic structure of twin growth defects in magnetite

Scientific Reports Springer Nature 6:1 (2016) 20943

Authors:

Daniel Gilks, Zlatko Nedelkoski, Leonardo Lari, Balati Kuerbanjiang, Kosuke Matsuzaki, Tomofumi Susaki, Demie Kepaptsoglou, Quentin Ramasse, Richard Evans, Keith McKenna, Vlado K Lazarov

Spin–orbit torque magnetization switching controlled by geometry

Nature Nanotechnology Springer Nature 11:2 (2016) 143-146

Authors:

CK Safeer, Emilie Jué, Alexandre Lopez, Liliana Buda-Prejbeanu, Stéphane Auffret, Stefania Pizzini, Olivier Boulle, Ioan Mihai Miron, Gilles Gaudin

Engineering helimagnetism in MnSi thin films

AIP Advances American Institute of Physics 6 (2016) 015217

Authors:

Shilei Zhang, R Chalasani, Alexander A Baker, N-J Steinke, AI Figueroa, A Kohn, G van der Laan, Thorsten Hesjedal

Abstract:

Magnetic skyrmion materials have the great advantage of a robust topological magnetic structure, which makes them stable against the superparamagnetic effect and therefore a candidate for the next-generation of spintronic memory devices. Bulk MnSi, with an ordering temperature of 29.5 K, is a typical skyrmion system with a propagation vector periodicity of ∼18 nm. One crucial prerequisite for any kind of application, however, is the observation and precise control of skyrmions in thin films at room-temperature. Strain in epitaxial MnSi thin films is known to raise the transition temperature to 43 K. Here we show, using magnetometry and x-ray spectroscopy, that the transition temperature can be raised further through proximity coupling to a ferromagnetic layer. Similarly, the external field required to stabilize the helimagnetic phase is lowered. Transmission electron microscopy with element-sensitive detection is used to explore the structural origin of ferromagnetism in these Mn-doped substrates. Our work suggests that an artificial pinning layer, not limited to the MnSi/Si system, may enable room temperature, zero-field skyrmion thin-film systems, thereby opening the door to device applications.