Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Illustration of strictly local dynamical symmetries

A system with a strictly local dynamical symmetry can be coupled to any external system (e.g. a cat) and will still persistently oscillate (see https://arxiv.org/abs/2008.11166)

Credit: Vendi Jukic Buca, Pulci

Dr Berislav Buca

Visitor

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum information and computation
  • Quantum materials
  • Quantum optics & ultra-cold matter

Sub department

  • Atomic and Laser Physics

Research groups

  • Quantum systems engineering
berislav.buca@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory
  • About
  • Publications

Self-induced entanglement resonance in a disordered Bose-Fermi mixture

(2021)

Authors:

Juan José Mendoza-Arenas, Berislav Buča
More details from the publisher
Details from ArXiV

Out-of-time-ordered crystals and fragmentation

Physical Review Letters American Physical Society 128 (2021) 100601

Abstract:

Is a spontaneous perpetual reversal of the arrow of time possible? The out-of-time-ordered correlator (OTOC) is a standard measure of irreversibility, quantum scrambling, and the arrow of time. The question may be thus formulated more precisely and conveniently: can spatially ordered perpetual OTOC oscillations exist in many-body systems? Here we give a rigorous lower bound on the amplitude of OTOC oscillations in terms of a strictly local dynamical algebra allowing for identification of systems that are out-of-time-ordered (OTO) crystals. While OTOC oscillations are possible for few-body systems, due to the spatial order requirement OTO crystals cannot be achieved by effective single or few body dynamics, e.g., a pendulum or a condensate. Rather they signal perpetual motion of quantum scrambling. It is likewise shown that if a Hamiltonian satisfies this novel algebra, it has an exponentially large number of local invariant subspaces, i.e., Hilbert space fragmentation. Crucially, the algebra, and hence the OTO crystal, are stable to local unitary and dissipative perturbations. A Creutz ladder is shown to be an OTO crystal, which thus perpetually reverses its arrow of time.
More details from the publisher
Details from ORA
Details from ArXiV

Bethe ansatz approach for dissipation: exact solutions of quantum many-body dynamics under loss

New Journal of Physics IOP Publishing 22 (2020) 123040

Authors:

Berislav Buca, Cameron Booker, Marko Medenjak, Dieter Jaksch

Abstract:

We develop a Bethe ansatz based approach to study dissipative systems experiencing loss. The method allows us to exactly calculate the spectra of interacting, many-body Liouvillians. We discuss how the dissipative Bethe ansatz opens the possibility of analytically calculating the dynamics of a wide range of experimentally relevant models including cold atoms subjected to one and two body losses, coupled cavity arrays with bosons escaping the cavity, and cavity quantum electrodynamics. As an example of our approach we study the relaxation properties in a boundary driven XXZ spin chain. We exactly calculate the Liouvillian gap and find different relaxation rates with a novel type of dynamical dissipative phase transition. This physically translates into the formation of a stable domain wall in the easy-axis regime despite the presence of loss. Such analytic results have previously been inaccessible for systems of this type.
More details from the publisher
Details from ORA
More details

Quantum many-body attractors

Research Square Platform (2020)

Authors:

Berislav Buca, Archak Purkayastha, Giacomo Guarnieri, Mark Mitchison, Dieter Jaksch, John Goold
More details from the publisher
Details from ArXiV

Non-stationarity and dissipative time crystals: Spectral properties and finite-size effects

New Journal of Physics IOP Publishing 22:August 2020 (2020) 085007

Authors:

Cameron Booker, Berislav Buca, Dieter Jaksch

Abstract:

We discuss the emergence of non-stationarity in open quantum many-body systems. This leads us to the definition of dissipative time crystals which display experimentally observable, persistent, time-periodic oscillations induced by noisy contact with an environment. We use the Loschmidt echo and local observables to indicate the presence of a finite sized dissipative time crystal. Starting from the closed Hubbard model we then provide examples of dissipation mechanisms that yield experimentally observable quantum periodic dynamics and allow analysis of the emergence of finite sized dissipative time crystals. For a disordered Hubbard model including two-particle loss and gain we find a dark Hamiltonian driving oscillations between GHZ states in the long-time limit. Finally, we discuss how the presented examples could be experimentally realized.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet