Quantum synchronisation enabled by dynamical symmetries and dissipation
New Journal of Physics IOP Publishing 22 (2019) 013026
Abstract:
In nature, instances of synchronisation abound across a diverse range of environments. In the quantum regime, however, synchronisation is typically observed by identifying an appropriate parameter regime in a specific system. In this work we show that this need not be the case, identifying symmetry-based conditions which, when satisfied, guarantee completely synchronous, entangled limit cycles between the individual constituents of a generic open quantum system - no restrictions are placed on its microscopic details. We describe these systems as posssessing a strong dynamical symmetry and we prove that, to first order, they are completely robust to symmetry-breaking perturbations. Using these ideas we identify two central examples where synchronisation arises via this qualitatively new mechanism: a chain of quadratically dephased spin-1s and the many-body charge-dephased Hubbard model. In both cases, due to their dynamical symmetries, perfect phase-locking occurs throughout the system, regardless of the specific microscopic parameters or initial states. Furthermore, when these systems are perturbed, their non-linear responses elicit long-lived signatures of both phase and frequency-locking.Symmetries and conservation laws in quantum trajectories: Dissipative freezing
Physical Review A American Physical Society 100:4 (2019) 042113
Abstract:
In driven-dissipative systems, the presence of a strong symmetry guarantees the existence of several steady states belonging to different symmetry sectors. Here we show that, when a system with a strong symmetry is initialized in a quantum superposition involving several of these sectors, each individual stochastic trajectory will randomly select a single one of them and remain there for the rest of the evolution. Since a strong symmetry implies a conservation law for the corresponding symmetry operator on the ensemble level, this selection of a single sector from an initial superposition entails a breakdown of this conservation law at the level of individual realizations. Given that such a superposition is impossible in a classical, stochastic trajectory, this is a a purely quantum effect with no classical analogue. Our results show that a system with a closed Liouvillian gap may exhibit, when monitored over a single run of an experiment, a behaviour completely opposite to the usual notion of dynamical phase coexistence and intermittency, which are typically considered hallmarks of a dissipative phase transition. We discuss our results with a simple, realistic model of squeezed superradiance.Exact large deviation statistics and trajectory phase transition of a deterministic boundary driven cellular automaton
Physical Review E American Physical Society (APS) 100:2 (2019) 020103
Heating-Induced Long-Range η Pairing in the Hubbard Model
Physical Review Letters American Physical Society 123:3 (2019) 030603
Abstract:
We show how, upon heating the spin degrees of freedom of the Hubbard model to infinite temperature, the symmetries of the system allow the creation of steady states with long-range correlations between η pairs. We induce this heating with either dissipation or periodic driving and evolve the system towards a nonequilibrium steady state, a process which melts all spin order in the system. The steady state is identical in both cases and displays distance-invariant off-diagonal η correlations. These correlations were first recognized in the superconducting eigenstates described in Yang’s seminal Letter [Phys. Rev. Lett. 63, 2144 (1989)], which are a subset of our steady states. We show that our results are a consequence of symmetry properties and entirely independent of the microscopic details of the model and the heating mechanism.Non-stationary dynamics and dissipative freezing in squeezed superradiance
(2019)