Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

John Chalker

Professorial Research Fellow

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
John.Chalker@physics.ox.ac.uk
Telephone: 01865 (2)73973
Rudolf Peierls Centre for Theoretical Physics, room 70.07
  • About
  • Teaching
  • Publications

3D loop models and the CP(n-1) sigma model.

Phys Rev Lett 107:11 (2011) 110601

Authors:

Adam Nahum, JT Chalker, P Serna, M Ortuño, AM Somoza

Abstract:

Many statistical mechanics problems can be framed in terms of random curves; we consider a class of three-dimensional loop models that are prototypes for such ensembles. The models show transitions between phases with infinite loops and short-loop phases. We map them to CP(n-1) sigma models, where n is the loop fugacity. Using Monte Carlo simulations, we find continuous transitions for n=1, 2, 3, and first order transitions for n≥5. The results are relevant to line defects in random media, as well as to Anderson localization and (2+1)-dimensional quantum magnets.
More details from the publisher
More details
Details from ArXiV

Site dilution in Kitaev's honeycomb model

ArXiv 1106.0732 (2011)

Authors:

AJ Willans, JT Chalker, R Moessner

Abstract:

We study the physical consequences of site dilution in Kitaev's honeycomb model, in both its gapped and gapless phases. We show that a vacancy binds a flux of the emergent $Z_2$ gauge field and induces a local moment. In the gapped phase this moment is free while in the gapless phase the susceptibility has the dependence $\chi(h)\sim\ln(1/h)$ on field strength $h$. Vacancy moments have interactions that depend on their separation, their relative sublattice, and the phase of the model. Strikingly, in the gapless phase, two nearby vacancies on the same sublattice have a parametrically larger $\chi(h)\sim(h[\ln(1/h)]^{3/2})^{-1}$. In the gapped phase, even a finite density of randomly distributed vacancies remains tractable, via a mapping to a bipartite random hopping problem. This leads to a strong disorder form of the low-energy thermodynamics, with a Dyson-type singularity in the density of states for excitations.
Details from ArXiV
More details from the publisher

Spin quantum Hall effect and plateau transitions in multilayer network models

ArXiv 1101.5921 (2011)

Authors:

JT Chalker, M Ortuño, AM Somoza

Abstract:

We study the spin quantum Hall effect and transitions between Hall plateaus in quasi two-dimensional network models consisting of several coupled layers. Systems exhibiting the spin quantum Hall effect belong to class C in the symmetry classification for Anderson localisation, and for network models in this class there is an established mapping between the quantum problem and a classical one involving random walks. This mapping permits numerical studies of plateau transitions in much larger samples than for other symmetry classes, and we use it to examine localisation in systems consisting of $n$ weakly coupled layers. Standard scaling ideas lead one to expect $n$ distinct plateau transitions, but in the case of the unitary symmetry class this conclusion has been questioned. Focussing on a two-layer model, we demonstrate that there are two separate plateau transitions, with the same critical properties as in a single-layer model, even for very weak interlayer coupling.
Details from ArXiV
More details from the publisher

Geometrically Frustrated Antiferromagnets: Statistical Mechanics and Dynamics

Chapter in Introduction to Frustrated Magnetism, Springer Nature 164 (2011) 3-22
More details
More details from the publisher

Equilibration of integer quantum Hall edge states

ArXiv 1009.4555 (2010)

Authors:

DL Kovrizhin, JT Chalker

Abstract:

We study equilibration of quantum Hall edge states at integer filling factors, motivated by experiments involving point contacts at finite bias. Idealising the experimental situation and extending the notion of a quantum quench, we consider time evolution from an initial non-equilibrium state in a translationally invariant system. We show that electron interactions bring the system into a steady state at long times. Strikingly, this state is not a thermal one: its properties depend on the full functional form of the initial electron distribution, and not simply on the initial energy density. Further, we demonstrate that measurements of the tunneling density of states at long times can yield either an over-estimate or an under-estimate of the energy density, depending on details of the analysis, and discuss this finding in connection with an apparent energy loss observed experimentally. More specifically, we treat several separate cases: for filling factor \nu=1 we discuss relaxation due to finite-range or Coulomb interactions between electrons in the same channel, and for filling factor \nu=2 we examine relaxation due to contact interactions between electrons in different channels. In both instances we calculate analytically the long-time asymptotics of the single-particle correlation function. These results are supported by an exact solution at arbitrary time for the problem of relaxation at \nu=2 from an initial state in which the two channels have electron distributions that are both thermal but with unequal temperatures, for which we also examine the tunneling density of states.
Details from ArXiV
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • Current page 12
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet