Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

John Chalker

Professorial Research Fellow

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
John.Chalker@physics.ox.ac.uk
Telephone: 01865 (2)73973
Rudolf Peierls Centre for Theoretical Physics, room 70.07
  • About
  • Teaching
  • Publications

Excitations of the One Dimensional Bose-Einstein Condensates in a Random Potential

ArXiv 0806.2322 (2008)

Authors:

V Gurarie, G Refael, JT Chalker

Abstract:

We examine bosons hopping on a one-dimensional lattice in the presence of a random potential at zero temperature. Bogoliubov excitations of the Bose-Einstein condensate formed under such conditions are localized, with the localization length diverging at low frequency as $\ell(\omega)\sim 1/\omega^\alpha$. We show that the well known result $\alpha=2$ applies only for sufficiently weak random potential. As the random potential is increased beyond a certain strength, $\alpha$ starts decreasing. At a critical strength of the potential, when the system of bosons is at the transition from a superfluid to an insulator, $\alpha=1$. This result is relevant for understanding the behavior of the atomic Bose-Einstein condensates in the presence of random potential, and of the disordered Josephson junction arrays.
Details from ArXiV
More details from the publisher
More details
More details

Classical-Quantum Mappings for Geometrically Frustrated Systems: Spin Ice in a [100] Field

ArXiv 0803.4204 (2008)

Authors:

Stephen Powell, JT Chalker

Abstract:

Certain classical statistical systems with strong local constraints are known to exhibit Coulomb phases, where long-range correlation functions have power-law forms. Continuous transitions from these into ordered phases cannot be described by a naive application of the Landau-Ginzburg-Wilson theory, since neither phase is thermally disordered. We present an alternative approach to a critical theory for such systems, based on a mapping to a quantum problem in one fewer spatial dimensions. We apply this method to spin ice, a magnetic material with geometrical frustration, which exhibits a Coulomb phase and a continuous transition to an ordered state in the presence of a magnetic field applied in the [100] direction.
Details from ArXiV
More details from the publisher

Structural phase transitions in geometrically frustrated antiferromagnets

ArXiv 0803.3593 (2008)

Authors:

Timothy E Saunders, John T Chalker

Abstract:

We study geometrically frustrated antiferromagnets with magnetoelastic coupling. Frustration in these systems may be relieved by a structural transition to a low temperature phase with reduced lattice symmetry. We examine the statistical mechanics of this transition and the effects on it of quenched disorder, using Monte Carlo simulations of the classical Heisenberg model on the pyrochlore lattice with coupling to uniform lattice distortions. The model has a transition between a cubic, paramagnetic high-temperature phase and a tetragonal, Neel ordered low-temperature phase. It does not support the spin-Peierls phase, which is predicted as an additional possibility within Landau theory, and the transition is first-order for reasons unconnected with the symmetry analysis of Landau theory. Quenched disorder stabilises the cubic phase, and we find a phase diagram as a function of temperature and disorder strength similar to that observed in ZnCdCrO.
Details from ArXiV
More details from the publisher

A Three Dimensional Kasteleyn Transition: Spin Ice in a [100] Field

ArXiv 0710.0976 (2007)

Authors:

Ludovic DC Jaubert, JT Chalker, Peter CW Holdsworth, R Moessner

Abstract:

We examine the statistical mechanics of spin-ice materials with a [100] magnetic field. We show that the approach to saturated magnetisation is, in the low-temperature limit, an example of a 3D Kasteleyn transition, which is topological in the sense that magnetisation is changed only by excitations that span the entire system. We study the transition analytically and using a Monte Carlo cluster algorithm, and compare our results with recent data from experiments on Dy2Ti2O7.
Details from ArXiV
More details from the publisher
More details
More details

Critical phenomena in a highly constrained classical spin system: Neel ordering from the Coulomb phase

ArXiv 0708.3791 (2007)

Authors:

TS Pickles, TE Saunders, JT Chalker

Abstract:

Many classical, geometrically frustrated antiferromagnets have macroscopically degenerate ground states. In a class of three-dimensional systems, the set of degenerate ground states has power-law correlations and is an example of a Coulomb phase. We investigate Neel ordering from such a Coulomb phase, induced by weak additional interactions that lift the degeneracy. We show that the critical point belongs to a universality class that is different from the one for the equivalent transition out of the paramagnetic phase, and that it is characterised by effective long-range interactions; alternatively, ordering may be discontinuous. We suggest that a transition of this type may be realised by applying uniaxial stress to a pyrochlore antiferromagnet.
Details from ArXiV
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Current page 16
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet