Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

John Chalker

Professorial Research Fellow

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
John.Chalker@physics.ox.ac.uk
Telephone: 01865 (2)73973
Rudolf Peierls Centre for Theoretical Physics, room 70.07
  • About
  • Teaching
  • Publications

Magnetism in rare-earth quasicrystals: RKKY interactions and ordering

EPL (Europhysics Letters) IOP Publishing 110:1 (2015) 17002

Authors:

Stefanie Thiem, JT Chalker
More details from the publisher
Details from ArXiV

Understanding the damage of polymer matrix composites by integrating chemical, morphological and mechanical properties

Proceedings of the American Society for Composites - 30th Technical Conference, ACS 2015 (2015)

Authors:

D Nepal, A Ecker, S Barr, J Moller, J Chalker, B Rooths, E Mungall, G Kedziora, R Berry, T Breitzman

Abstract:

Detailed physical and mechanical characterization of the matrix as well as the interphases of polymer matrix composites can lead to a more complete understanding of failure mechanisms in polymer matrix composite (PMC). This study illustrates mechanical damage of polymers in both the bulk, as well as around the interphase region through integrated computation & experimentation approach. We have developed a quantum mechanics-molecular dynamics framework, which has enabled the prediction of bond scission under load, creation of intermittent free radicals, and exploration of the potential energy surface for possible secondary reactions immediately following bond scission. In parallel, we have conducted experiments with epoxy systems with varying molecular weight and cross-linker density at different load conditions to benchmark the simulation findings of the chemical species present on fracture surfaces of the polymer. In order to evaluate experimentally molecular level effects of mechanical load in epoxy-systems, detail characterizations were conducted combing spectroscopy (X-ray photoelectron spectroscopy, FT-Infrared spectroscopy), microscopy (HRTEM, AFM-IR, SEM), X-ray diffraction (SAXS) and mechanical testing (3-point bending). Similarly, the nanoscopic nature of interphases of PMCs in terms of topography, chemical mapping/bonding, fractography, and modulus are also studied in order to find a bridge between nanoscopic, microscopic and macroscopic mechanical properties.

Doping a topological quantum spin liquid: Slow holes in the Kitaev honeycomb model

Physical Review B American Physical Society (APS) 90:3 (2014) 035145

Authors:

Gábor B Halász, JT Chalker, R Moessner
More details from the publisher
Details from ArXiV

Phase transitions in three-dimensional loop models and the CPn-1 sigma model

Physical Review B - Condensed Matter and Materials Physics 88:13 (2013)

Authors:

A Nahum, JT Chalker, P Serna, M Ortuño, AM Somoza

Abstract:

We consider the statistical mechanics of a class of models involving close-packed loops with fugacity n on three-dimensional lattices. The models exhibit phases of two types as a coupling constant is varied: in one, all loops are finite, and in the other, some loops are infinitely extended. We show that the loop models are discretizations of CPn-1 σ models. The finite and infinite loop phases represent, respectively, disordered and ordered phases of the σ model, and we discuss the relationship between loop properties and σ model correlators. On large scales, loops are Brownian in an ordered phase and have a nontrivial fractal dimension at a critical point. We simulate the models, finding continuous transitions between the two phases for n=1,2,3 and first order transitions for n≥4. We also give a renormalization-group treatment of the CPn-1 model that shows how a continuous transition can survive for values of n larger than (but close to) 2, despite the presence of a cubic invariant in the Landau-Ginzburg description. The results we obtain are of broader relevance to a variety of problems, including SU(n) quantum magnets in (2+1) dimensions, Anderson localization in symmetry class C, and the statistics of random curves in three dimensions. © 2013 American Physical Society.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Length Distributions in Loop Soups

ArXiv 1308.043 (2013)

Authors:

Adam Nahum, JT Chalker, P Serna, M Ortuno, AM Somoza

Abstract:

Statistical lattice ensembles of loops in three or more dimensions typically have phases in which the longest loops fill a finite fraction of the system. In such phases it is natural to ask about the distribution of loop lengths. We show how to calculate moments of these distributions using $CP^{n-1}$ or $RP^{n-1}$ and O(n) $\sigma$ models together with replica techniques. The resulting joint length distribution for macroscopic loops is Poisson-Dirichlet with a parameter $\theta$ fixed by the loop fugacity and by symmetries of the ensemble. We also discuss features of the length distribution for shorter loops, and use numerical simulations to test and illustrate our conclusions.
More details from the publisher
More details
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Current page 10
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet