Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

John Chalker

Professorial Research Fellow

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
John.Chalker@physics.ox.ac.uk
Telephone: 01865 (2)73973
Rudolf Peierls Centre for Theoretical Physics, room 70.07
  • About
  • Teaching
  • Publications

Spin freezing in geometrically frustrated antiferromagnets with weak disorder.

Phys Rev Lett 98:15 (2007) 157201

Authors:

TE Saunders, JT Chalker

Abstract:

We investigate the consequences for geometrically frustrated antiferromagnets of weak disorder in the strength of exchange interactions. Taking as a model the classical Heisenberg antiferromagnet with nearest neighbor exchange on the pyrochlore lattice, we examine low-temperature behavior. We show that spatial modulation of exchange generates long-range effective interactions within the extensively degenerate ground states of the clean system. Using Monte Carlo simulations, we find a spin glass transition at a temperature set by the disorder strength. Disorder of this type, which is generated by random strains in the presence of magnetoelastic coupling, may account for the spin freezing observed in many geometrically frustrated magnets.
More details from the publisher
More details
Details from ArXiV

Decoherence and interactions in an electronic Mach-Zehnder interferometer

ArXiv cond-mat/0703162 (2007)

Authors:

JT Chalker, Yuval Gefen, MY Veillette

Abstract:

We develop a theoretical description of a Mach-Zehnder interferometer built from integer quantum Hall edge states, with an emphasis on how electron-electron interactions produce decoherence. We calculate the visibility of interference fringes and noise power, as a function of bias voltage and of temperature. Interactions are treated exactly, by using bosonization and considering edge states that are only weakly coupled via tunneling at the interferometer beam-splitters. In this weak-tunneling limit, we show that the bias-dependence of Aharonov-Bohm oscillations in source-drain conductance and noise power provides a direct measure of the one-electron correlation function for an isolated quantum Hall edge state. We find the asymptotic form of this correlation function for systems with either short-range interactions or unscreened Coulomb interactions, extracting a dephasing length $\ell_{\phi}$ that varies with temperature $T$ as $\ell_{\phi} \propto T^{-3}$ in the first case and as $\ell_{\phi} \propto T^{-1} \ln^2(T)$ in the second case.
Details from ArXiV
More details from the publisher

Density of quasiparticle states for a two-dimensional disordered system: Metallic, insulating, and critical behavior in the class D thermal quantum Hall effect

ArXiv cond-mat/0610700 (2006)

Authors:

A Mildenberger, F Evers, AD Mirlin, JT Chalker

Abstract:

We investigate numerically the quasiparticle density of states $\varrho(E)$ for a two-dimensional, disordered superconductor in which both time-reversal and spin-rotation symmetry are broken. As a generic single-particle description of this class of systems (symmetry class D), we use the Cho-Fisher version of the network model. This has three phases: a thermal insulator, a thermal metal, and a quantized thermal Hall conductor. In the thermal metal we find a logarithmic divergence in $\varrho(E)$ as $E\to 0$, as predicted from sigma model calculations. Finite size effects lead to superimposed oscillations, as expected from random matrix theory. In the thermal insulator and quantized thermal Hall conductor, we find that $\varrho(E)$ is finite at E=0. At the plateau transition between these phases, $\varrho(E)$ decreases towards zero as $|E|$ is reduced, in line with the result $\varrho(E) \sim |E|\ln(1/|E|)$ derived from calculations for Dirac fermions with random mass.
Details from ArXiV
More details from the publisher

Spin textures and random fields in dirty quantum hall ferromagnets

INT J MOD PHYS B 20:19 (2006) 2785-2794

Abstract:

Dirty quantum Hall ferromagnets (QHFMs) provide a setting both for new problems in the theory of magnetism with quenched disorder, and for new realisations of old problems. In the first category, the fact that spin textures in Heisenberg QHFMs carry charge leads to a coupling between charged impurities and magnetic order. This coupling drives a zero-temperature transition between a ferromagnet at low disorder and a spin glass at strong disorder, and controls screening and the nature of excitations in the disorder-dominated ground state. In the second category, random fields coupling linearly to the order parameter appear in some Ising QHFMs, and transport measurements appear to indicate field-induced domain states at low temperature.
More details from the publisher

SPIN TEXTURES AND RANDOM FIELDS IN DIRTY QUANTUM HALL FERROMAGNETS

World Scientific Publishing (2006) 231-240
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet