Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

John Chalker

Professorial Research Fellow

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
John.Chalker@physics.ox.ac.uk
Telephone: 01865 (2)73973
Rudolf Peierls Centre for Theoretical Physics, room 70.07
  • About
  • Teaching
  • Publications

Commensurate and incommensurate ground states of Cs_2CuCl_4 in a magnetic field

ArXiv cond-mat/0601268 (2006)

Authors:

MY Veillette, JT Chalker

Abstract:

We present calculations of the magnetic ground state of Cs_2CuCl_4 in an applied magnetic field, with the aim of understanding the commensurately ordered state that has been discovered in recent experiments. This layered material is a realization of a Heisenberg antiferromagnet on an anisotropic triangular lattice. Its behavior in a magnetic field depends on field orientation, because of weak Dzyaloshinskii-Moriya interactions.We study the system by mapping the spin-1/2 Heisenberg Hamiltonian onto a Bose gas with hard core repulsion. This Bose gas is dilute, and calculations are controlled, close to the saturation field. We find a zero-temperature transition between incommensurate and commensurate phases as longitudinal field strength is varied, but only incommensurate order in a transverse field. Results for both field orientations are consistent with experiment.
Details from ArXiV
More details from the publisher

Transport between edge states in multilayer integer quantum Hall systems: exact treatment of Coulomb interactions and disorder

ArXiv cond-mat/0506223 (2005)

Authors:

JW Tomlinson, J-S Caux, JT Chalker

Abstract:

A set of stacked two-dimensional electron systems in a perpendicular magnetic field exhibits a three-dimensional version of the quantum Hall effect if interlayer tunneling is not too strong. When such a sample is in a quantum Hall plateau, the edge states of each layer combine to form a chiral metal at the sample surface. We study the interplay of interactions and disorder in transport properties of the chiral metal, in the regime of weak interlayer tunneling. Our starting point is a system without interlayer tunneling, in which the only excitations are harmonic collective modes: surface magnetoplasmons. Using bosonization and working perturbatively in the interlayer tunneling amplitude, we express transport properties in terms of the spectrum for these collective modes, treating electron-electron interactions and impurity scattering exactly. We calculte the conductivity as a function of temperature, finding that it increases with increasing temperature as observed in recent experiments. We also calculate the autocorrelation function of mesoscopic conductance fluctuations induced by changes in a magnetic field component perpendicular to the sample surface, and its dependence on temperature. We show that conductance fluctuations are characterised by a dephasing length that varies inversely with temperature.
Details from ArXiV
More details from the publisher

Electron Interactions and Transport between Coupled Quantum Hall Edge States

Physical Review Letters 94 (2005) 086804 4pp

Authors:

JT Chalker, J. W. Tomlinson, J.-S. Caux
More details from the publisher
More details
More details
Details from ArXiV

Electrostatic theory for imaging experiments on local charges in quantum Hall systems

ArXiv cond-mat/0502304 (2005)

Authors:

Ana LC Pereira, JT Chalker

Abstract:

We use a simple electrostatic treatment to model recent experiments on quantum Hall systems, in which charging of localised states by addition of integer or fractionally-charged quasiparticles is observed. Treating the localised state as a compressible quantum dot or antidot embedded in an incompressible background, we calculate the electrostatic potential in its vicinity as a function of its charge, and the chemical potential values at which its charge changes. The results offer a quantitative framework for analysis of the observations.
Details from ArXiV
More details from the publisher

Ground states of a frustrated spin-1/2 antifferomagnet: Cs_2CuCl_4 in a magnetic field

ArXiv cond-mat/0501347 (2005)

Authors:

MY Veillette, JT Chalker, R Coldea

Abstract:

We present detailed calculations of the magnetic ground state properties of Cs$_2$CuCl$_4$ in an applied magnetic field, and compare our results with recent experiments. The material is described by a spin Hamiltonian, determined with precision in high field measurements, in which the main interaction is antiferromagnetic Heisenberg exchange between neighboring spins on an anisotropic triangular lattice. An additional, weak Dzyaloshinkii-Moriya interaction introduces easy-plane anisotropy, so that behavior is different for transverse and longitudinal field directions. We determine the phase diagram as a function of field strength for both field directions at zero temperature, using a classical approximation as a first step. Building on this, we calculate the effect of quantum fluctuations on the ordering wavevector and components of the ordered moments, using both linear spinwave theory and a mapping to a Bose gas which gives exact results when the magnetization is almost saturated. Many aspects of the experimental data are well accounted for by this approach.
Details from ArXiV
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • Current page 18
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet