Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
A VUV sub-micron hotspot for photoemission spectroscopy

Vacuum ultraviolet (VUV) lasers have exhibited great potential as the light source for various spectroscopies, which, if they can be focused into a smaller beam spot, will not only allow investigation of mesoscopic materials but also find applications in manufacture of nano-objects with excellent precision. Towards this goal, scientists in China invented a 177 nm VUV laser system that can achieve a record-small (<1 μm) focal spot at a long focal length (~45 mm). This system can be re-equipped for usage in low-cost ARPES and might benefit quantum materials, condensed matter physics and nanophotonics.

Prof Yulin Chen

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Electronic structures and photoemission spectroscopy
yulin.chen@physics.ox.ac.uk
Clarendon Laboratory, room RM263, Mullard Bldg.
Recent publications
  • About
  • Publications

Erratum: “Experimental observation of conductive edge states in weak topological insulator candidate Hf Te5” [APL Mater. 6, 121111 (2018)]

APL Materials AIP Publishing 8:10 (2020) 109901

Authors:

S Liu, MX Wang, C Chen, X Xu, J Jiang, LX Yang, HF Yang, YY Lv, J Zhou, YB Chen, SH Yao, MH Lu, YF Chen, C Felser, BH Yan, ZK Liu, YL Chen
More details from the publisher
More details

Exploiting Two-Dimensional Bi2 O2 Se for Trace Oxygen Detection.

Angewandte Chemie (International ed. in English) 59:41 (2020) 17938-17943

Authors:

Shipu Xu, Huixia Fu, Ye Tian, Tao Deng, Jun Cai, Jinxiong Wu, Teng Tu, Tianran Li, Congwei Tan, Yan Liang, Congcong Zhang, Zhi Liu, Zhongkai Liu, Yulin Chen, Ying Jiang, Binghai Yan, Hailin Peng

Abstract:

We exploit a high-performing resistive-type trace oxygen sensor based on 2D high-mobility semiconducting Bi2 O2 Se nanoplates. Scanning tunneling microscopy combined with first-principle calculations confirms an amorphous Se atomic layer formed on the surface of 2D Bi2 O2 Se exposed to oxygen, which contributes to larger specific surface area and abundant active adsorption sites. Such 2D Bi2 O2 Se oxygen sensors have remarkable oxygen-adsorption induced variations of carrier density/mobility, and exhibit an ultrahigh sensitivity featuring minimum detection limit of 0.25 ppm, long-term stability, high durativity, and wide-range response to concentration up to 400 ppm at room temperature. 2D Bi2 O2 Se arrayed sensors integrated in parallel form are found to possess an oxygen detection minimum of sub-0.25 ppm ascribed to an enhanced signal-to-noise ratio. These advanced sensor characteristics involving ease integration show 2D Bi2 O2 Se is an ideal candidate for trace oxygen detection.
More details from the publisher
More details
More details

High-throughput calculations of magnetic topological materials.

Nature 586:7831 (2020) 702-707

Authors:

Yuanfeng Xu, Luis Elcoro, Zhi-Da Song, Benjamin J Wieder, MG Vergniory, Nicolas Regnault, Yulin Chen, Claudia Felser, B Andrei Bernevig

Abstract:

The discoveries of intrinsically magnetic topological materials, including semimetals with a large anomalous Hall effect and axion insulators1-3, have directed fundamental research in solid-state materials. Topological quantum chemistry4 has enabled the understanding of and the search for paramagnetic topological materials5,6. Using magnetic topological indices obtained from magnetic topological quantum chemistry (MTQC)7, here we perform a high-throughput search for magnetic topological materials based on first-principles calculations. We use as our starting point the Magnetic Materials Database on the Bilbao Crystallographic Server, which contains more than 549 magnetic compounds with magnetic structures deduced from neutron-scattering experiments, and identify 130 enforced semimetals (for which the band crossings are implied by symmetry eigenvalues), and topological insulators. For each compound, we perform complete electronic structure calculations, which include complete topological phase diagrams using different values of the Hubbard potential. Using a custom code to find the magnetic co-representations of all bands in all magnetic space groups, we generate data to be fed into the algorithm of MTQC to determine the topology of each magnetic material. Several of these materials display previously unknown topological phases, including symmetry-indicated magnetic semimetals, three-dimensional anomalous Hall insulators and higher-order magnetic semimetals. We analyse topological trends in the materials under varying interactions: 60 per cent of the 130 topological materials have topologies sensitive to interactions, and the others have stable topologies under varying interactions. We provide a materials database for future experimental studies and open-source code for diagnosing topologies of magnetic materials.
More details from the publisher
More details

Recent Advances in Topological Quantum Materials by Angle-Resolved Photoemission Spectroscopy

Matter Elsevier 3:4 (2020) 1114-1141

Authors:

Yujie Chen, Xu Gu, Yiwei Li, Xian Du, Lexian Yang, Yulin Chen
More details from the publisher

Interaction effects and superconductivity signatures in twisted double-bilayer WSe2.

Nanoscale horizons 5:9 (2020) 1309-1316

Authors:

Liheng An, Xiangbin Cai, Ding Pei, Meizhen Huang, Zefei Wu, Zishu Zhou, Jiangxiazi Lin, Zhehan Ying, Zhehan Ying, Ziqing Ye, Xuemeng Feng, Ruiyan Gao, Cephise Cacho, Matthew Watson, Yulin Chen, Ning Wang

Abstract:

Twisted bilayer graphene provides a new two-dimensional platform for studying electron interaction phenomena and flat band properties such as correlated insulator transition, superconductivity and ferromagnetism at certain magic angles. Here, we present experimental characterization of interaction effects and superconductivity signatures in p-type twisted double-bilayer WSe2. Enhanced interlayer interactions are observed when the twist angle decreases to a few degrees as reflected by the high-order satellites in the electron diffraction patterns taken from the reconstructed domains from a conventional moiré superlattice. In contrast to twisted bilayer graphene, there is no specific magic angle for twisted WSe2. Flat band properties are observable at twist angles ranging from 1 to 4 degrees. Our work has facilitated future study in the area of flat band related properties in twisted transition metal dichalcogenide layered structures.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • Current page 24
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet