Topological Lifshitz transition of the intersurface Fermi-arc loop in NbIrTe4
Physical Review B American Physical Society (APS) 102:8 (2020) 085126
Angle-Resolved Photoemission Spectroscopy Study of Topological Quantum Materials
Chapter in , Annual Reviews 50:1 (2020) 131-153
Electronic structure of the Si-containing topological Dirac semimetal CaAl2Si2
Physical Review B American Physical Society (APS) 102:4 (2020) 045106
Determination of interatomic coupling between two-dimensional crystals using angle-resolved photoemission spectroscopy.
Nature communications 11:1 (2020) 3582
Abstract:
Lack of directional bonding between two-dimensional crystals like graphene or monolayer transition metal dichalcogenides provides unusual freedom in the selection of components for vertical van der Waals heterostructures. However, even for identical layers, their stacking, in particular the relative angle between their crystallographic directions, modifies properties of the structure. We demonstrate that the interatomic coupling between two two-dimensional crystals can be determined from angle-resolved photoemission spectra of a trilayer structure with one aligned and one twisted interface. Each of the interfaces provides complementary information and together they enable self-consistent determination of the coupling. We parametrise interatomic coupling for carbon atoms by studying twisted trilayer graphene and show that the result can be applied to structures with different twists and number of layers. Our approach demonstrates how to extract fundamental information about interlayer coupling in a stack of two-dimensional crystals and can be applied to many other van der Waals interfaces.Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5.
Science advances 6:31 (2020) eabb6003