Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
A VUV sub-micron hotspot for photoemission spectroscopy

Vacuum ultraviolet (VUV) lasers have exhibited great potential as the light source for various spectroscopies, which, if they can be focused into a smaller beam spot, will not only allow investigation of mesoscopic materials but also find applications in manufacture of nano-objects with excellent precision. Towards this goal, scientists in China invented a 177 nm VUV laser system that can achieve a record-small (<1 μm) focal spot at a long focal length (~45 mm). This system can be re-equipped for usage in low-cost ARPES and might benefit quantum materials, condensed matter physics and nanophotonics.

Prof Yulin Chen

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Electronic structures and photoemission spectroscopy
yulin.chen@physics.ox.ac.uk
Clarendon Laboratory, room RM263, Mullard Bldg.
Recent publications
  • About
  • Publications

Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5.

Sci Adv 6:31 (2020)

Authors:

Shuo-Ying Yang, Yaojia Wang, Brenden R Ortiz, Defa Liu, Jacob Gayles, Elena Derunova, Rafael Gonzalez-Hernandez, Libor Šmejkal, Yulin Chen, Stuart SP Parkin, Stephen D Wilson, Eric S Toberer, Tyrel McQueen, Mazhar N Ali

Abstract:

The anomalous Hall effect (AHE) is one of the most fundamental phenomena in physics. In the highly conductive regime, ferromagnetic metals have been the focus of past research. Here, we report a giant extrinsic AHE in KV3Sb5, an exfoliable, highly conductive semimetal with Dirac quasiparticles and a vanadium Kagome net. Even without report of long range magnetic order, the anomalous Hall conductivity reaches 15,507 Ω-1 cm-1 with an anomalous Hall ratio of ≈ 1.8%; an order of magnitude larger than Fe. Defying theoretical expectations, KV3Sb5 shows enhanced skew scattering that scales quadratically, not linearly, with the longitudinal conductivity, possibly arising from the combination of highly conductive Dirac quasiparticles with a frustrated magnetic sublattice. This allows the possibility of reaching an anomalous Hall angle of 90° in metals. This observation raises fundamental questions about AHEs and opens new frontiers for AHE and spin Hall effect exploration, particularly in metallic frustrated magnets.
More details from the publisher

Pressure-Induced Topological and Structural Phase Transitions in an Antiferromagnetic Topological Insulator**Supported by the National Key Research and Development Program of China under Grant Nos. 2018YFA0704300 and 2017YFE0131300, the National Natural Science Foundation of China under Grant Nos. U1932217, 11974246, 11874263 and 10225417, and the Natural Science Foundation of Shanghai under Grant No. 19ZR1477300. The authors thank the support from Analytical Instrumentation Center (SPST-AIC10112914), SPST, ShanghaiTech University. This work was partially supported by Collaborative Research Project of Materials and Structures Laboratory, Tokyo Institute of Technology, Japan. Part of this research is supported by COMPRES (NSF Cooperative Agreement EAR-1661511).

Chinese Physics Letters IOP Publishing 37:6 (2020) 066401

Authors:

Cuiying Pei, Yunyouyou Xia, Jiazhen Wu, Yi Zhao, Lingling Gao, Tianping Ying, Bo Gao, Nana Li, Wenge Yang, Dongzhou Zhang, Huiyang Gou, Yulin Chen, Hideo Hosono, Gang Li, Yanpeng Qi
More details from the publisher
More details

Signature for non-Stoner ferromagnetism in the van der Waals ferromagnet Fe3GeTe2

Physical Review B American Physical Society (APS) 101:20 (2020) 201104

Authors:

X Xu, YW Li, SR Duan, SL Zhang, YJ Chen, L Kang, AJ Liang, C Chen, W Xia, Y Xu, P Malinowski, XD Xu, J-H Chu, G Li, YF Guo, ZK Liu, LX Yang, YL Chen
More details from the publisher
More details

Electronic structure and spatial inhomogeneity of iron-based superconductor FeS**Project supported by CAS-Shanghai Science Research Center, China (Grant No. CAS-SSRC-YH-2015-01), the National Key R&D Program of China (Grant No. 2017YFA0305400), the National Natural Science Foundation of China (Grant Nos. 11674229, 11227902, and 11604207), the EPSRC Platform Grant (Grant No. EP/M020517/1), Hefei Science Center, Chinese Academy of Sciences (Grant No. 2015HSC-UE013), Science and Technology Commission of Shanghai Municipality, China (Grant No. 14520722100), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB04040200).

Chinese Physics B IOP Publishing 29:4 (2020) 047401

Authors:

Chengwei Wang, Meixiao Wang, Juan Jiang, Haifeng Yang, Lexian Yang, Wujun Shi, Xiaofang Lai, Sung-Kwan Mo, Alexei Barinov, Binghai Yan, Zhi Liu, Fuqiang Huang, Jinfeng Jia, Zhongkai Liu, Yulin Chen
More details from the publisher
More details

Universal gapless Dirac cone and tunable topological states in (MnBi2Te4)m(Bi2Te3)n heterostructures

Physical Review B American Physical Society (APS) 101:16 (2020) 161113

Authors:

Yong Hu, Lixuan Xu, Mengzhu Shi, Aiyun Luo, Shuting Peng, ZY Wang, JJ Ying, T Wu, ZK Liu, CF Zhang, YL Chen, G Xu, X-H Chen, J-F He
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • Current page 26
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet