Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
A VUV sub-micron hotspot for photoemission spectroscopy

Vacuum ultraviolet (VUV) lasers have exhibited great potential as the light source for various spectroscopies, which, if they can be focused into a smaller beam spot, will not only allow investigation of mesoscopic materials but also find applications in manufacture of nano-objects with excellent precision. Towards this goal, scientists in China invented a 177 nm VUV laser system that can achieve a record-small (<1 μm) focal spot at a long focal length (~45 mm). This system can be re-equipped for usage in low-cost ARPES and might benefit quantum materials, condensed matter physics and nanophotonics.

Prof Yulin Chen

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Electronic structures and photoemission spectroscopy
yulin.chen@physics.ox.ac.uk
Clarendon Laboratory, room RM263, Mullard Bldg.
Recent publications
  • About
  • Publications

ARPES investigation of the electronic structure and its evolution in magnetic topological insulator MnBi2+2nTe4+3n family.

National science review 11:2 (2024) nwad313

Authors:

Runzhe Xu, Lixuan Xu, Zhongkai Liu, Lexian Yang, Yulin Chen

Abstract:

In the past 5 years, there has been significant research interest in the intrinsic magnetic topological insulator family compounds MnBi2+2nTe4+3n (where n = 0, 1, 2 …). In particular, exfoliated thin films of MnBi2Te4 have led to numerous experimental breakthroughs, such as the quantum anomalous Hall effect, axion insulator phase and high-Chern number quantum Hall effect without Landau levels. However, despite extensive efforts, the energy gap of the topological surface states due to exchange magnetic coupling, which is a key feature of the characteristic band structure of the system, remains experimentally elusive. The electronic structure measured by using angle-resolved photoemission (ARPES) shows significant deviation from ab initio prediction and scanning tunneling spectroscopy measurements, making it challenging to understand the transport results based on the electronic structure. This paper reviews the measurements of the band structure of MnBi2+2nTe4+3n magnetic topological insulators using ARPES, focusing on the evolution of their electronic structures with temperature, surface and bulk doping and film thickness. The aim of the review is to construct a unified picture of the electronic structure of MnBi2+2nTe4+3n compounds and explore possible control of their topological properties.
More details from the publisher
More details

ARPES investigation of the electronic structure and its evolution in magnetic topological insulator MnBi2+2nTe4+3n family

Nature Physics Springer Nature 20:4 (2024) 571-578

Authors:

Dingsong Wu, Jiangang Yang, Jieyi Liu, Houke Chen, Yiheng Yang, Cheng Peng, Yulin Chen, Junjie Jia

Abstract:

The origin of high-temperature superconductivity in iron-based superconductors is still not understood; determination of the pairing symmetry is essential for understanding the superconductivity mechanism. In the iron-based superconductors that have hole pockets around the Brillouin zone centre and electron pockets around the zone corners, the pairing symmetry is generally considered to be s±, which indicates a sign change in the superconducting gap between the hole and electron pockets. For the iron-based superconductors with only hole pockets, however, a couple of pairing scenarios have been proposed, but the exact symmetry is still controversial. Here we determine that the pairing symmetry in KFe2As2—which is a prototypical iron-based superconductor with hole pockets both around the zone centre and around the zone corners—is also of the s± type. Our laser-based angle-resolved photoemission measurements have determined the superconducting gap distribution and identified the locations of the gap nodes on all the Fermi surfaces around the zone centres and the zone corners. These results unify the pairing symmetry in hole-doped iron-based superconductors and point to spin fluctuation as the pairing glue in generating superconductivity.
More details from the publisher

Nodal s± pairing symmetry in an iron-based superconductor with only hole pockets

Nature Physics Springer Nature 20:4 (2024) 571-578

Authors:

Dingsong Wu, Junjie Jia, Jiangang Yang, Wenshan Hong, Yingjie Shu, Taimin Miao, Hongtao Yan, Hongtao Rong, Ping Ai, Xing Zhang, Chaohui Yin, Jieyi Liu, Houke Chen, Yiheng Yang, Cheng Peng, Chenlong Li, Shenjin Zhang, Fengfeng Zhang, Feng Yang, Zhimin Wang, Nan Zong, Lijuan Liu, Rukang Li, Xiaoyang Wang, Qinjun Peng, Hanqing Mao, Guodong Liu, Shiliang Li, Yulin Chen, Huiqian Luo, Xianxin Wu, Zuyan Xu, Lin Zhao, Xj Zhou

Abstract:

The origin of high-temperature superconductivity in iron-based superconductors is still not understood; determination of the pairing symmetry is essential for understanding the superconductivity mechanism. In the iron-based superconductors that have hole pockets around the Brillouin zone centre and electron pockets around the zone corners, the pairing symmetry is generally considered to be s±, which indicates a sign change in the superconducting gap between the hole and electron pockets. For the iron-based superconductors with only hole pockets, however, a couple of pairing scenarios have been proposed, but the exact symmetry is still controversial. Here we determine that the pairing symmetry in KFe2As2—which is a prototypical iron-based superconductor with hole pockets both around the zone centre and around the zone corners—is also of the s± type. Our laser-based angle-resolved photoemission measurements have determined the superconducting gap distribution and identified the locations of the gap nodes on all the Fermi surfaces around the zone centres and the zone corners. These results unify the pairing symmetry in hole-doped iron-based superconductors and point to spin fluctuation as the pairing glue in generating superconductivity.
More details from the publisher
Details from ORA
More details

Controlling charge density order in 2H-TaSe2 using a van Hove singularity

Physical Review Research American Physical Society (APS) 6:1 (2024) 013088

Authors:

WRB Luckin, Y Li, J Jiang, SM Gunasekera, C Wen, Y Zhang, D Prabhakaran, F Flicker, Y Chen, M Mucha-Kruczyński
More details from the publisher
More details

Pressure-induced superconductivity in the Zintl topological insulator SrIn2As2

Physical Review B American Physical Society (APS) 108:22 (2023) 224510

Authors:

Weizheng Cao, Haifeng Yang, Yongkai Li, Cuiying Pei, Qi Wang, Yi Zhao, Changhua Li, Mingxin Zhang, Shihao Zhu, Juefei Wu, Lili Zhang, Zhiwei Wang, Yugui Yao, Zhongkai Liu, Yulin Chen, Yanpeng Qi
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet