Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
A VUV sub-micron hotspot for photoemission spectroscopy

Vacuum ultraviolet (VUV) lasers have exhibited great potential as the light source for various spectroscopies, which, if they can be focused into a smaller beam spot, will not only allow investigation of mesoscopic materials but also find applications in manufacture of nano-objects with excellent precision. Towards this goal, scientists in China invented a 177 nm VUV laser system that can achieve a record-small (<1 μm) focal spot at a long focal length (~45 mm). This system can be re-equipped for usage in low-cost ARPES and might benefit quantum materials, condensed matter physics and nanophotonics.

Prof Yulin Chen

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Electronic structures and photoemission spectroscopy
yulin.chen@physics.ox.ac.uk
Clarendon Laboratory, room RM263, Mullard Bldg.
Recent publications
  • About
  • Publications

Proximity-effect-induced superconductivity in a van der Waals heterostructure consisting of a magnetic topological insulator and a conventional superconductor

Physical Review B American Physical Society 109:14 (2024) L140503

Authors:

Peng Dong, Xiaofei Hou, Jiadian He, Yiwen Zhang, Yifan Ding, Xiaohui Zeng, Jinghui Wang, Yueshen Wu, Kenji Watanabe, Takashi Taniguchi, Wei Xia, Yanfeng Guo, Yulin Chen, Xiang Zhou, Wei Li, Jun Li

Abstract:

Nontrivial topological superconductivity has received enormous attention due to its potential applications in topological quantum computing. The intrinsic issue concerning the correlation between a topological insulator and a superconductor is, however, still widely open. Here, we systemically report an emergent superconductivity in a cross junction composed of a magnetic topological insulator MnBi2⁢Te4 and a conventional superconductor NbSe2. Remarkably, the interface indicates the existence of a reduced superconductivity at the surface of NbSe2 and a proximity-effect-induced superconductivity at the surface of MnBi2⁢Te4. Furthermore, the in-plane angular-dependent magnetoresistance measurements unveil distinctive features indicative of unconventional pairing symmetry in these superconducting gaps. Our findings extend our views and ideas of topological superconductivity in the superconducting heterostructures with time-reversal symmetry breaking, offering an exciting opportunity to elucidate the cooperative effects on the surface state of a topological insulator aligning a superconductor.
More details from the publisher
Details from ORA

Proximity-effect-induced superconductivity in a van der Waals heterostructure consisting of a magnetic topological insulator and a conventional superconductor

Physical Review B American Physical Society (APS) 109:14 (2024) l140503

Authors:

Peng Dong, Xiaofei Hou, Jiadian He, Yiwen Zhang, Yifan Ding, Xiaohui Zeng, Jinghui Wang, Yueshen Wu, Kenji Watanabe, Takashi Taniguchi, Wei Xia, Yanfeng Guo, Yulin Chen, Xiang Zhou, Wei Li, Jun Li
More details from the publisher
More details

Conversion of chirality to twisting via sequential one-dimensional and two-dimensional growth of graphene spirals.

Nature materials 23:3 (2024) 331-338

Authors:

Zhu-Jun Wang, Xiao Kong, Yuan Huang, Jun Li, Lihong Bao, Kecheng Cao, Yuxiong Hu, Jun Cai, Lifen Wang, Hui Chen, Yueshen Wu, Yiwen Zhang, Fei Pang, Zhihai Cheng, Petr Babor, Miroslav Kolibal, Zhongkai Liu, Yulin Chen, Qiang Zhang, Yi Cui, Kaihui Liu, Haitao Yang, Xinhe Bao, Hong-Jun Gao, Zhi Liu, Wei Ji, Feng Ding, Marc-Georg Willinger

Abstract:

The properties of two-dimensional (2D) van der Waals materials can be tuned through nanostructuring or controlled layer stacking, where interlayer hybridization induces exotic electronic states and transport phenomena. Here we describe a viable approach and underlying mechanism for the assisted self-assembly of twisted layer graphene. The process, which can be implemented in standard chemical vapour deposition growth, is best described by analogy to origami and kirigami with paper. It involves the controlled induction of wrinkle formation in single-layer graphene with subsequent wrinkle folding, tearing and re-growth. Inherent to the process is the formation of intertwined graphene spirals and conversion of the chiral angle of 1D wrinkles into a 2D twist angle of a 3D superlattice. The approach can be extended to other foldable 2D materials and facilitates the production of miniaturized electronic components, including capacitors, resistors, inductors and superconductors.
More details from the publisher
More details
More details

Distinct superconducting states in the pressure-induced metallic structures of topological heterostructure BiTe

Materials Today Physics Elsevier 42 (2024) 101377

Authors:

Shihao Zhu, Bangshuai Zhu, Cuiying Pei, Qi Wang, Jing Chen, Qinghua Zhang, Tianping Ying, Lin Gu, Yi Zhao, Changhua Li, Weizheng Cao, Mingxin Zhang, Lili Zhang, Jian Sun, Yulin Chen, Juefei Wu, Yanpeng Qi
More details from the publisher
More details

Distinct superconducting states in the pressure-induced metallic structures of topological heterostructure BiTe

Materials Today Physics Elsevier 42 (2024) 101377

Abstract:

The (Bi2)m(Bi2Te3)n homologous series possess natural multilayer heterostructure with intriguing physical properties at ambient pressure. Herein, we report the pressure-dependent evolution of the structure and electrical transport of the dual topological insulator BiTe, a member of the (Bi2)m(Bi2Te3)n series. With applied pressure, BiTe exhibits several different crystal structures and distinct superconducting states, which is remarkably similar to other members of the (Bi2)m(Bi2Te3)n series. Our results provide a systematic phase diagram for the pressure-induced superconductivity in BiTe, contributing to the highly interesting physics in this (Bi2)m(Bi2Te3)n series.

More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet