Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
A VUV sub-micron hotspot for photoemission spectroscopy

Vacuum ultraviolet (VUV) lasers have exhibited great potential as the light source for various spectroscopies, which, if they can be focused into a smaller beam spot, will not only allow investigation of mesoscopic materials but also find applications in manufacture of nano-objects with excellent precision. Towards this goal, scientists in China invented a 177 nm VUV laser system that can achieve a record-small (<1 μm) focal spot at a long focal length (~45 mm). This system can be re-equipped for usage in low-cost ARPES and might benefit quantum materials, condensed matter physics and nanophotonics.

Prof Yulin Chen

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Electronic structures and photoemission spectroscopy
yulin.chen@physics.ox.ac.uk
Clarendon Laboratory, room RM263, Mullard Bldg.
Recent publications
  • About
  • Publications

Electron–K-phonon interaction in twisted bilayer graphene

Physical Review B American Physical Society 110:4 (2024) 045133

Authors:

Chao-Xing Liu, Yulin Chen, Ali Yazdani, B Andrei Bernevig

Abstract:

We develop an analytic theory to describe the interaction between electrons and K phonons and study its influence on superconductivity in the bare bands of twisted bilayer graphene (TBG). We find that, due to symmetry and the two-center approximation, only one optical K phonon (∼160meV) of graphene is responsible for the intervalley electron-phonon interaction. This phonon has recently been found in angular-resolved photoemission spectroscopy to be responsible for replicas of the TBG flat bands. By projecting the interaction to the TBG flat bands, we perform the full symmetry analysis of the phonon-mediated attractive interaction and pairing channels in the Chern basis, and show that several channels are guaranteed to have gapless order parameters. From the linearized gap equations, we find that the highest Tc pairing induced by this phonon is a singlet gapped s-wave inter-Chern-band order parameter, followed closely by a gapless nematic d-wave intra-Chern-band order parameter. We justify these results analytically, using the topological heavy-fermion mapping of TBG which has allowed us to obtain an analytic form of a phonon-mediated attractive interaction and to analytically solve the linearized and T=0 gap equations. For the intra-Chern-band channel, the nematic state with nodes is shown to be stabilized in the chiral flat-band limit. While the flat-band Coulomb interaction can be screened sufficiently enough - around the Van Hove singularities - to allow for electron-phonon based superconductivity, it is unlikely that this effect can be maintained in the lower density of states excitation bands around the correlated insulator states.
More details from the publisher
Details from ORA
More details

Electronic Correlation and Pseudogap-Like Behavior of High-Temperature Superconductor La3Ni2O7

Chinese Physics Letters IOP Publishing 41:8 (2024) 087402

Authors:

Yidian Li, Xian Du, Yantao Cao, Cuiying Pei, Mingxin Zhang, Wenxuan Zhao, Kaiyi Zhai, Runzhe Xu, Zhongkai Liu, Zhiwei Li, Jinkui Zhao, Gang Li, Yanpeng Qi, Hanjie Guo, Yulin Chen, Lexian Yang

Abstract:

High-temperature superconductivity (HTSC) remains one of the most challenging and fascinating mysteries in condensed matter physics. Recently, superconductivity with transition temperature exceeding liquid-nitrogen temperature is discovered in La3Ni2O7 at high pressure, which provides a new platform to explore the unconventional HTSC. In this work, using high-resolution angle-resolved photoemission spectroscopy and ab initio calculation, we systematically investigate the electronic structures of La3Ni2O7 at ambient pressure. Our experiments are in nice agreement with ab initio calculations after considering an orbital-dependent band renormalization effect. The strong electron correlation effect pushes a flat band of dz2 orbital component below the Fermi level (EF), which is predicted to locate right at EF under high pressure. Moreover, the dx2-y2 band shows pseudogap-like behavior with suppressed spectral weight and diminished quasiparticle peak near EF. Our findings provide important insights into the electronic structure of La3Ni2O7, which will shed light on understanding of the unconventional superconductivity in nickelates.
More details from the publisher
More details

Disorder‐Broadened Phase Boundary with Enhanced Amorphous Superconductivity in Pressurized In2Te5

Advanced Materials Wiley 36:27 (2024) e2401118

Authors:

Yi Zhao, Tianping Ying, Lingxiao Zhao, Juefei Wu, Cuiying Pei, Jing Chen, Jun Deng, Qinghua Zhang, Lin Gu, Qi Wang, Weizheng Cao, Changhua Li, Shihao Zhu, Mingxin Zhang, Na Yu, Lili Zhang, Yulin Chen, Chui‐Zhen Chen, Tongxu Yu, Yanpeng Qi
More details from the publisher
More details
More details

Observation of Type-II Topological Nodal-Line Fermions in ZrSiSe

ACS Nano American Chemical Society (2024)
More details from the publisher

Observation of type-II topological nodal-line fermions in ZrSiSe

ACS Nano American Chemical Society 18:26 (2024) 16684-16691

Authors:

Minhao Zhao, Zheng-Yang Zhuang, Fan Wu, Pengliang Leng, Nesta Benno Joseph, Xiaoyi Xie, Mykhaylo Ozerov, Shanmei He, Yulin Chen, Awadhesh Narayan, Zhongkai Liu, Faxian Xiu

Abstract:

Recently, there has been significant interest in topological nodal-line semimetals due to their linear energy dispersion with one-dimensional nodal lines or loops. These materials exhibit fascinating physical properties, such as drumhead surface states and 3D anisotropic nodal-line structures. Similar to Weyl semimetals, type-II nodal-line semimetals have two crossing bands that are both electron-like or hole-like along a certain direction. However, the direct observation of type-II nodal-line Fermions has been challenging due to the lack of suitable material platforms and the low density of states. Here we present experimental evidence for the coexistence of both type-I and type-II nodal-line Fermions in ZrSiSe, which was obtained through magneto-optical and angle-resolved photoemission spectroscopy (ARPES) measurements. Our density functional theory calculations predict that the type-II nodal-line structure can be developed in the Z-R line of the first Brillouin zone based on the lattice constants of the grown single crystal. Indeed, ARPES measurements reveal the type-II nodal-line band structure. The extracted type-II Landau level transitions from magneto-optical measurements exhibit good agreement with the calculated type-II energy dispersion model based on the band structure. Our experimental results demonstrate that ZrSiSe possesses two types of nodal-line Fermions, distinguishing it from other ZrSiX (X = S, Te) materials and positioning it as an ideal platform for investigating type-II nodal-line semimetals.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet