Disorder-broadened phase boundary with enhancedamorphous superconductivity in pressurized In2Te5
Advanced Materials Wiley 36:27 (2024) 2401118
Abstract:
As an empirical tool in materials science and engineering, the iconic phase diagram owes its robustness and practicality to the topological characteristics rooted in the celebrated Gibbs phase law free variables (F) = components (C) – phases (P) + 2. When crossing the phase diagram boundary, the structure transition occurs abruptly, bringing about an instantaneous change in physical properties and limited controllability on the boundaries (F = 1). Here, the sharp phase boundary is expanded to an amorphous transition region (F = 2) by partially disrupting the long-range translational symmetry, leading to a sequential crystalline–amorphous–crystalline (CAC) transition in a pressurized In2Te5 single crystal. Through detailed in situ synchrotron diffraction, it is elucidated that the phase transition stems from the rotation of immobile blocks [In2Te2]2+, linked by hinge-like [Te3]2− trimers. Remarkably, within the amorphous region, the amorphous phase demonstrates a notable 25% increase of the superconducting transition temperature (Tc), while the carrier concentration remains relatively constant. Furthermore, a theoretical framework is proposed revealing that the unconventional boost in amorphous superconductivity might be attributed to an intensified electron correlation, triggered by a disorder-augmented multifractal behavior. These findings underscore the potential of disorder and prompt further exploration of unforeseen phenomena on the phase boundaries.Proximity-effect-induced superconductivity in a van der Waals heterostructure consisting of a magnetic topological insulator and a conventional superconductor
Physical Review B American Physical Society 109:14 (2024) L140503
Abstract:
Nontrivial topological superconductivity has received enormous attention due to its potential applications in topological quantum computing. The intrinsic issue concerning the correlation between a topological insulator and a superconductor is, however, still widely open. Here, we systemically report an emergent superconductivity in a cross junction composed of a magnetic topological insulator MnBi2Te4 and a conventional superconductor NbSe2. Remarkably, the interface indicates the existence of a reduced superconductivity at the surface of NbSe2 and a proximity-effect-induced superconductivity at the surface of MnBi2Te4. Furthermore, the in-plane angular-dependent magnetoresistance measurements unveil distinctive features indicative of unconventional pairing symmetry in these superconducting gaps. Our findings extend our views and ideas of topological superconductivity in the superconducting heterostructures with time-reversal symmetry breaking, offering an exciting opportunity to elucidate the cooperative effects on the surface state of a topological insulator aligning a superconductor.Proximity-effect-induced superconductivity in a van der Waals heterostructure consisting of a magnetic topological insulator and a conventional superconductor
Physical Review B American Physical Society (APS) 109:14 (2024) l140503
Conversion of chirality to twisting via sequential one-dimensional and two-dimensional growth of graphene spirals.
Nature materials 23:3 (2024) 331-338
Abstract:
The properties of two-dimensional (2D) van der Waals materials can be tuned through nanostructuring or controlled layer stacking, where interlayer hybridization induces exotic electronic states and transport phenomena. Here we describe a viable approach and underlying mechanism for the assisted self-assembly of twisted layer graphene. The process, which can be implemented in standard chemical vapour deposition growth, is best described by analogy to origami and kirigami with paper. It involves the controlled induction of wrinkle formation in single-layer graphene with subsequent wrinkle folding, tearing and re-growth. Inherent to the process is the formation of intertwined graphene spirals and conversion of the chiral angle of 1D wrinkles into a 2D twist angle of a 3D superlattice. The approach can be extended to other foldable 2D materials and facilitates the production of miniaturized electronic components, including capacitors, resistors, inductors and superconductors.Distinct superconducting states in the pressure-induced metallic structures of topological heterostructure BiTe
Materials Today Physics Elsevier 42 (2024) 101377