Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
A VUV sub-micron hotspot for photoemission spectroscopy

Vacuum ultraviolet (VUV) lasers have exhibited great potential as the light source for various spectroscopies, which, if they can be focused into a smaller beam spot, will not only allow investigation of mesoscopic materials but also find applications in manufacture of nano-objects with excellent precision. Towards this goal, scientists in China invented a 177 nm VUV laser system that can achieve a record-small (<1 μm) focal spot at a long focal length (~45 mm). This system can be re-equipped for usage in low-cost ARPES and might benefit quantum materials, condensed matter physics and nanophotonics.

Prof Yulin Chen

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Electronic structures and photoemission spectroscopy
yulin.chen@physics.ox.ac.uk
Clarendon Laboratory, room RM263, Mullard Bldg.
Recent publications
  • About
  • Publications

ARPES investigation of the electronic structure and its evolution in magnetic topological insulator MnBi2+2nTe4+3n family

Nature Physics Springer Nature 20:4 (2024) 571-578

Authors:

Dingsong Wu, Jiangang Yang, Jieyi Liu, Houke Chen, Yiheng Yang, Cheng Peng, Yulin Chen, Junjie Jia

Abstract:

The origin of high-temperature superconductivity in iron-based superconductors is still not understood; determination of the pairing symmetry is essential for understanding the superconductivity mechanism. In the iron-based superconductors that have hole pockets around the Brillouin zone centre and electron pockets around the zone corners, the pairing symmetry is generally considered to be s±, which indicates a sign change in the superconducting gap between the hole and electron pockets. For the iron-based superconductors with only hole pockets, however, a couple of pairing scenarios have been proposed, but the exact symmetry is still controversial. Here we determine that the pairing symmetry in KFe2As2—which is a prototypical iron-based superconductor with hole pockets both around the zone centre and around the zone corners—is also of the s± type. Our laser-based angle-resolved photoemission measurements have determined the superconducting gap distribution and identified the locations of the gap nodes on all the Fermi surfaces around the zone centres and the zone corners. These results unify the pairing symmetry in hole-doped iron-based superconductors and point to spin fluctuation as the pairing glue in generating superconductivity.
More details from the publisher

Nodal s± pairing symmetry in an iron-based superconductor with only hole pockets

Nature Physics Springer Nature 20:4 (2024) 571-578

Authors:

Dingsong Wu, Junjie Jia, Jiangang Yang, Wenshan Hong, Yingjie Shu, Taimin Miao, Hongtao Yan, Hongtao Rong, Ping Ai, Xing Zhang, Chaohui Yin, Jieyi Liu, Houke Chen, Yiheng Yang, Cheng Peng, Chenlong Li, Shenjin Zhang, Fengfeng Zhang, Feng Yang, Zhimin Wang, Nan Zong, Lijuan Liu, Rukang Li, Xiaoyang Wang, Qinjun Peng, Hanqing Mao, Guodong Liu, Shiliang Li, Yulin Chen, Huiqian Luo, Xianxin Wu, Zuyan Xu, Lin Zhao, Xj Zhou

Abstract:

The origin of high-temperature superconductivity in iron-based superconductors is still not understood; determination of the pairing symmetry is essential for understanding the superconductivity mechanism. In the iron-based superconductors that have hole pockets around the Brillouin zone centre and electron pockets around the zone corners, the pairing symmetry is generally considered to be s±, which indicates a sign change in the superconducting gap between the hole and electron pockets. For the iron-based superconductors with only hole pockets, however, a couple of pairing scenarios have been proposed, but the exact symmetry is still controversial. Here we determine that the pairing symmetry in KFe2As2—which is a prototypical iron-based superconductor with hole pockets both around the zone centre and around the zone corners—is also of the s± type. Our laser-based angle-resolved photoemission measurements have determined the superconducting gap distribution and identified the locations of the gap nodes on all the Fermi surfaces around the zone centres and the zone corners. These results unify the pairing symmetry in hole-doped iron-based superconductors and point to spin fluctuation as the pairing glue in generating superconductivity.
More details from the publisher
Details from ORA
More details

ARPES investigation of the electronic structure and its evolution in magnetic topological insulator MnBi2+2nTe4+3n family

National Science Review Oxford University Press (OUP) 11:2 (2024) nwad313

Authors:

Runzhe Xu, Lixuan Xu, Zhongkai Liu, Lexian Yang, Yulin Chen
More details from the publisher
More details
More details

Controlling charge density order in 2H-TaSe2 using a van Hove singularity

Physical Review Research American Physical Society (APS) 6:1 (2024) 013088

Authors:

WRB Luckin, Y Li, J Jiang, SM Gunasekera, C Wen, Y Zhang, D Prabhakaran, F Flicker, Y Chen, M Mucha-Kruczyński
More details from the publisher
More details

Extraction of Spatiotemporal Information of Rainfall-Induced Landslides from Remote Sensing

REMOTE SENSING 16:16 (2024) ARTN 3089

Authors:

Tongxiao Zeng, Jun Zhang, Yulin Chen, Shaonan Zhu
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Current page 10
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet