Modelling the Galaxy Bimodality: Shutdown Above a Critical Halo Mass
(2006)
UV-optical colours as probes of early-type galaxy evolution
ArXiv astro-ph/0601029 (2006)
Abstract:
We have studied ~2100 early-type galaxies in the SDSS DR3 which have been detected by the GALEX Medium Imaging Survey (MIS), in the redshift range 0 < z < 0.11. Combining GALEX UV photometry with corollary optical data from the SDSS, we find that, at a 95 percent confidence level, at least ~30 percent of galaxies in this sample have UV to optical colours consistent with some recent star formation within the last Gyr. In particular, galaxies with a NUV - r colour less than 5.5 are very likely to have experienced such recent star formation, taking into account the possibility of a contribution to NUV flux from the UV upturn phenomenon. We find quantitative agreement between the observations and the predictions of a semi-analytical LCDM hierarchical merger model and deduce that early-type galaxies in the redshift range 0 < z < 0.11 have ~1 to 3 percent of their stellar mass in stars less than 1 Gyr old. The average age of this recently formed population is ~300 to 500 Myrs. We also find that monolithically evolving galaxies, where recent star formation can be driven solely by recycled gas from stellar mass loss, cannot exhibit the blue colours (NUV - r < 5.5) seen in a significant fraction (~30 percent) of our observed sample.Formation of structure in molecular clouds: A case study
Astrophysical Journal 633:2 II (2005)
Abstract:
Molecular clouds (MCs) are highly structured and turbulent. Colliding gas streams of atomic hydrogen have been suggested as a possible source of MCs, imprinting the filamentary structure as a consequence of dynamical and thermal instabilities. We present a two-dimensional numerical analysis of MC formation via converging H I flows. Even with modest flow speeds and completely uniform inflows, nonlinear density perturbations arise as possible precursors of MCs. Thus, we suggest that MCs are inevitably formed with substantial structure, e.g., strong density and velocity fluctuations, which provide the initial conditions for subsequent gravitational collapse and star formation in a variety of Galactic and extragalactic environments. © 2005. The American Astronomical Society. All rights reserved.Formation of structure in molecular clouds: A case study
ASTROPHYSICAL JOURNAL 633:2 (2005) L113-L116