Active Galactic Nuclei In Cosmological Simulations - I. Formation of black holes and spheroids through mergers
(2005)
Formation of Structure in Molecular Clouds: A Case Study
ArXiv astro-ph/0507567 (2005)
Abstract:
Molecular clouds (MCs) are highly structured and ``turbulent''. Colliding gas streams of atomic hydrogen have been suggested as a possible source of MCs, imprinting the filamentary structure as a consequence of dynamical and thermal instabilities. We present a 2D numerical analysis of MC formation via converging HI flows. Even with modest flow speeds and completely uniform inflows, non-linear density perturbations as possible precursors of MCs arise. Thus, we suggest that MCs are inevitably formed with substantial structure, e.g., strong density and velocity fluctuations, which provide the initial conditions for subsequent gravitational collapse and star formation in a variety of galactic and extragalactic environments.Non-linear evolution of suppressed dark matter primordial power spectra
Monthly Notices of the Royal Astronomical Society 360:1 (2005) 282-287
Abstract:
We address the degree and rapidity of generation of small-scale power over the course of structure formation in cosmologies where the primordial power spectrum is strongly suppressed beyond a given wavenumber. We first summarize the situations where one expects such suppressed power spectra and point out their diversity. We then employ an exponential cut-off, which characterizes warm dark matter (WDM) models, as a template for the shape of the cut-off and focus on damping scales ranging from 106 to 109 h -1 M⊙. Using high-resolution simulations, we show that the suppressed part of the power spectrum is quickly (re)generated and catches up with both the linear and the non-linear evolution of the unsuppressed power spectrum. From z = 2 onwards, a power spectrum with a primordial cut-off at 109 h-1 MŁódź, becomes virtually indistinguishable from an evolved cold dark matter (CDM) power spectrum. An attractor such as that described in Zaldarriaga, Scoccimarro & Hui for power spectra with different spectral indices also emerges in the case of truncated power spectra. Measurements of z ∼ 0 non-linear power spectra at ∼100 h-1 kpc cannot rule out the possibility of linear power spectra damped below ∼109 h-1 M ⊙. Therefore, WDM or scenarios with similar features should be difficult to exclude in this way. © 2005 RAS.A simple model for the evolution of supermassive black holes and the quasar population
Monthly Notices of the Royal Astronomical Society 359:4 (2005) 1363-1378