Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

Fluctuation Dissipation Relations for the Non-Reciprocal Cahn-Hilliard Model

(2025)

Authors:

Martin Kjøllesdal Johnsrud, Ramin Golestanian
Details from ArXiV

Mechanistic rules for de novo design of enzymes

Chem Catalysis (2025)

Authors:

M Chatzittofi, J Agudo-Canalejo, R Golestanian

Abstract:

Enzymes are nano-scale machines that have evolved to drive chemical reactions out of equilibrium in the right place at the right time. Given the complexity and specificity of enzymatic function, the bottom-up design of enzymes presents a daunting task that is far more challenging than making passive molecules with specific binding affinities or building nano-scale mechanically active devices. We present a thermodynamically consistent model for the operation of such a fueled enzyme, which uses the energy from a favorable reaction to undergo non-equilibrium conformational changes that in turn catalyze a chemical reaction on an attached substrate molecule. We show that enzymatic function can emerge through a bifurcation upon appropriate implementation of momentum conservation on the effective reaction coordinates of the low-dimensional description of the enzyme, and thanks to a generically present dissipative coupling. Our results can complement the recently developed strategies for de novo enzyme design based on machine learning approaches.
More details from the publisher

Defect interactions in the non-reciprocal Cahn–Hilliard model

New Journal of Physics IOP Publishing 26:12 (2024) 123008

Authors:

Navdeep Rana, Ramin Golestanian
More details from the publisher
More details

Emergent polar order in nonpolar mixtures with nonreciprocal interactions.

Proceedings of the National Academy of Sciences of the United States of America 121:51 (2024) e2407705121

Authors:

Giulia Pisegna, Suropriya Saha, Ramin Golestanian

Abstract:

Phenomenological rules that govern the collective behavior of complex physical systems are powerful tools because they can make concrete predictions about their universality class based on generic considerations, such as symmetries, conservation laws, and dimensionality. While in most cases such considerations are manifestly ingrained in the constituents, novel phenomenology can emerge when composite units associated with emergent symmetries dominate the behavior of the system. We study a generic class of active matter systems with nonreciprocal interactions and demonstrate the existence of true long-range polar order in two dimensions and above, both at the linear level and by including all relevant nonlinearities in the Renormalization Group sense. We achieve this by uncovering a mapping of our scalar active mixture theory to the Toner-Tu theory of dry polar active matter by employing a suitably defined polar order parameter. We then demonstrate that the complete effective field theory-which includes all the soft modes and the relevant nonlinear terms-belongs to the (Burgers-) Kardar-Parisi-Zhang universality class. This classification allows us to prove the stability of the emergent polar long-range order in scalar nonreciprocal mixtures in two dimensions, and hence a conclusive violation of the Mermin-Wagner theorem.
More details from the publisher
More details
More details

Collective self-caging of active filaments in virtual confinement

Nature Communications Nature Research 15:1 (2024) 9122

Authors:

Maximilian Kurjahn, Leila Abbaspour, Franziska Papenfuß, Philip Bittihn, Ramin Golestanian, Benoît Mahault, Stefan Karpitschka

Abstract:

Motility coupled to responsive behavior is essential for many microorganisms to seek and establish appropriate habitats. One of the simplest possible responses, reversing the direction of motion, is believed to enable filamentous cyanobacteria to form stable aggregates or accumulate in suitable light conditions. Here, we demonstrate that filamentous morphology in combination with responding to light gradients by reversals has consequences far beyond simple accumulation: Entangled aggregates form at the boundaries of illuminated regions, harnessing the boundary to establish local order. We explore how the light pattern, in particular its boundary curvature, impacts aggregation. A minimal mechanistic model of active flexible filaments resembles the experimental findings, thereby revealing the emergent and generic character of these structures. This phenomenon may enable elongated microorganisms to generate adaptive colony architectures in limited habitats or guide the assembly of biomimetic fibrous materials.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet