Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

Hydrodynamic stresses in a multi-species suspension of active Janus colloids

Physical Review Research American Physical Society (APS) 7:3 (2025) 033003

Authors:

Gennaro Tucci, Giulia Pisegna, Ramin Golestanian, Suropriya Saha

Abstract:

A realistic description of active particles should include interactions with the medium, commonly a momentum-conserving simple fluid, in which they are suspended. In this work, we consider a multispecies suspension of self-diffusiophoretic Janus colloids interacting via chemical and hydrodynamic fields. Through a systematic coarse-graining of the microscopic dynamics, we calculate the multicomponent contribution to the hydrodynamic stress tensor of the incompressible Stokesian fluid in which the particles are immersed. For a single species, we find that the strength of the stress produced by the gradients of the number density field is determined by the particles' self-propulsion and chemotactic alignment, and can be tuned to be either contractile or extensile. For a multispecies system, we unveil how different forms of activity modify the stress tensor and how it can acquire nonreciprocal couplings due to phoretic effects. Published by the American Physical Society 2025
More details from the publisher
More details

3D multiscale shape analysis of nuclei and in-vivo elastic stress sensors allows force inference

Biophysical Journal Elsevier (2025)

Authors:

Alejandro Jurado, Jonas Isensee, Arne Hofemeier, Lea Johanna Krüger, Raphael Wittkowski, Ramin Golestanian, Philip Bittihn, Timo Betz

Abstract:

The measurement of stresses and forces at the tissue level has proven to be an indispensable tool for the understanding of complex biological phenomena such as cancer invasion, embryo development, or wound healing. One of the most versatile tools for force inference at the cell and tissue level are elastic force sensors, whose biocompatibility and tunable material properties make them suitable for many different experimental scenarios. The evaluation of those forces, however, is still a bottleneck due to the numerical methods seen in the literature until now, which are usually slow and render low experimental yield. Here, we present BeadBuddy, a ready-to-use platform for the evaluation of deformation and stresses from fluorescently labeled sensors within seconds. The strengths of BeadBuddy lie in the precomputed analytical solutions of the elastic problem, the abstraction of data into spherical harmonics, and a simple user interface that creates a smooth workflow for force inference.
More details from the publisher

Technology Roadmap of Micro/Nanorobots

ACS Nano American Chemical Society (ACS) (2025)

Authors:

Xiaohui Ju, Chuanrui Chen, Cagatay M Oral, Semih Sevim, Ramin Golestanian, Mengmeng Sun, Negin Bouzari, Xiankun Lin, Mario Urso, Jong Seok Nam, Yujang Cho, Xia Peng, Fabian C Landers, Shihao Yang, Azin Adibi, Nahid Taz, Raphael Wittkowski, Daniel Ahmed, Wei Wang, Veronika Magdanz, Mariana Medina-Sánchez, Maria Guix, Naimat Bari, Bahareh Behkam, Raymond Kapral, Yaxin Huang, Jinyao Tang, Ben Wang, Konstantin Morozov, Alexander Leshansky, Sarmad Ahmad Abbasi, Hongsoo Choi, Subhadip Ghosh, Bárbara Borges Fernandes, Giuseppe Battaglia, Peer Fischer, Ambarish Ghosh, Beatriz Jurado Sánchez, Alberto Escarpa, Quentin Martinet, Jérémie Palacci, Eric Lauga, Jeffrey Moran, Miguel A Ramos-Docampo, Brigitte Städler, Ramón Santiago Herrera Restrepo, Gilad Yossifon, James D Nicholas, Jordi Ignés-Mullol, Josep Puigmartí-Luis, Yutong Liu, Lauren D Zarzar, C Wyatt Shields, Longqiu Li, Shanshan Li, Xing Ma, David H Gracias, Orlin Velev, Samuel Sánchez, Maria Jose Esplandiu, Juliane Simmchen, Antonio Lobosco, Sarthak Misra, Zhiguang Wu, Jinxing Li, Alexander Kuhn, Amir Nourhani, Tijana Maric, Ze Xiong, Amirreza Aghakhani, Yongfeng Mei, Yingfeng Tu, Fei Peng, Eric Diller, Mahmut Selman Sakar, Ayusman Sen, Junhui Law, Yu Sun, Abdon Pena-Francesch, Katherine Villa, Huaizhi Li, Donglei Emma Fan, Kang Liang, Tony Jun Huang, Xiang-Zhong Chen, Songsong Tang, Xueji Zhang, Jizhai Cui, Hong Wang, Wei Gao, Vineeth Kumar Bandari, Oliver G Schmidt, Xianghua Wu, Jianguo Guan, Metin Sitti, Bradley J Nelson, Salvador Pané, Li Zhang, Hamed Shahsavan, Qiang He, Il-Doo Kim, Joseph Wang, Martin Pumera

Abstract:

Inspired by Richard Feynman's 1959 lecture and the 1966 film Fantastic Voyage, the field of micro/nanorobots has evolved from science fiction to reality, with significant advancements in biomedical and environmental applications. Despite the rapid progress, the deployment of functional micro/nanorobots remains limited. This review of the technology roadmap identifies key challenges hindering their widespread use, focusing on propulsion mechanisms, fundamental theoretical aspects, collective behavior, material design, and embodied intelligence. We explore the current state of micro/nanorobot technology, with an emphasis on applications in biomedicine, environmental remediation, analytical sensing, and other industrial technological aspects. Additionally, we analyze issues related to scaling up production, commercialization, and regulatory frameworks that are crucial for transitioning from research to practical applications. We also emphasize the need for interdisciplinary collaboration to address both technical and nontechnical challenges, such as sustainability, ethics, and business considerations. Finally, we propose a roadmap for future research to accelerate the development of micro/nanorobots, positioning them as essential tools for addressing grand challenges and enhancing the quality of life.
More details from the publisher
More details
More details

Topological phase locking in stochastic oscillators

Nature Communications Nature Research 16:1 (2025) 4835

Authors:

Michalis Chatzittofi, Ramin Golestanian, Jaime Agudo-Canalejo

Abstract:

The dynamics of many nanoscale biological and synthetic systems such as enzymes and molecular motors are activated by thermal noise, and driven out-of-equilibrium by local energy dissipation. Because the energies dissipated in these systems are comparable to the thermal energy, one would generally expect their dynamics to be highly stochastic. Here, by studying a thermodynamically-consistent model of two coupled noise-activated oscillators, we show that this is not always the case. Thanks to a novel phenomenon that we term topological phase locking (TPL), the coupled dynamics become quasi-deterministic, resulting in a greatly enhanced average speed of the oscillators. TPL is characterized by the emergence of a band of periodic orbits that form a torus knot in phase space, along which the two oscillators advance in rational multiples of each other. The effectively conservative dynamics along this band coexists with the basin of attraction of the dissipative fixed point. We further show that TPL arises as a result of a complex, infinite hierarchy of global bifurcations. Our results have implications for understanding the dynamics of a wide range of systems, from biological enzymes and molecular motors to engineered nanoscale electronic, optical, or mechanical oscillators.
More details from the publisher
Details from ORA
More details
More details

Hydrodynamically Consistent Many-Body Harada-Sasa Relation

Physical Review Letters American Physical Society (APS) 134:20 (2025) 207101
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet