Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

Shape dependent phoretic propulsion of slender active particles

Physical Review Fluids American Physical Society (APS) 3:3 (2018) 033101

Authors:

Y Ibrahim, R Golestanian, TB Liverpool
More details from the publisher

Pattern formation by curvature-inducing proteins on spherical membranes

New Journal of Physics IOP Publishing 19:12 (2017) 125013

Authors:

Jaime Agudo-Canalejo, Ramin Golestanian
More details from the publisher

Shape of the growing front of biofilms

New Journal of Physics IOP Publishing 19:12 (2017) 125007

Authors:

Xin Wang, Howard A Stone, Ramin Golestanian
More details from the publisher

Focusing and sorting of ellipsoidal magnetic particles in microchannels

Physical Review Letters American Physical Society 119:19 (2017) 198002

Authors:

Daiki Matsunaga, Fanlong Meng, Andreas Zoettl, Ramin Golestanian, Julia Yeomans

Abstract:

We present a simple method to control the position of ellipsoidal magnetic particles in microchannel Poiseuille flow at low Reynolds number using a static uniform magnetic field. The magnetic field is utilized to pin the particle orientation, and the hydrodynamic interactions between ellipsoids and channel walls allow control of the transverse position of the particles. We employ a far-field hydrodynamic theory and simulations using the boundary element method and Brownian dynamics to show how magnetic particles can be focussed and segregated by size and shape. This is of importance for particle manipulation in lab-on-a-chip devices.
More details from the publisher
Details from ORA
More details
More details

Diffusion of an enzyme: the role of fluctuation-induced hydrodynamic coupling

EPL EPL Association 119:4 (2017) 40002

Authors:

P Illien, Tunrayo Adeleke-Larodo, Ramin Golestanian

Abstract:

The effect of conformational fluctuations of modular macromolecules, such as enzymes, on their diffusion properties is addressed using a simple generic model of an asymmetric dumbbell made of two hydrodynamically coupled subunits. It is shown that equilibrium fluctuations can lead to an interplay between the internal and the external degrees of freedom and give rise to negative contributions to the overall diffusion coefficient. Considering that this model enzyme explores a mechanochemical cycle, we show how substrate binding and unbinding affects its internal fluctuations, and how this can result in an enhancement of the overall diffusion coefficient of the molecule. These theoretical predictions are successfully confronted with recent measurements of enzyme diffusion in dilute conditions using fluorescence correlation spectroscopy.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • Current page 34
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet