Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

Fluctuations of fluctuation-induced casimir-like forces.

Phys Rev Lett 89:23 (2002) 230601

Authors:

Denis Bartolo, Armand Ajdari, Jean-Baptiste Fournier, Ramin Golestanian

Abstract:

The force experienced by objects embedded in a correlated medium undergoing thermal fluctuations-the so-called fluctuation-induced force-is actually itself a fluctuating quantity. Using a scalar field model, we compute the corresponding probability distribution and show that it is a Gaussian centered on the well-known Casimir force, with a nonuniversal standard deviation that can be typically as large as the mean force itself. The relevance of these results to the experimental measurement of fluctuation-induced forces in soft condensed matter is discussed, as well as the influence of the finite temporal resolution of the measuring apparatus.
More details from the publisher
More details
Details from ArXiV

Normal and Lateral Casimir Forces between Deformed Plates

ArXiv cond-mat/0211193 (2002)

Authors:

Thorsten Emig, Andreas Hanke, Ramin Golestanian, Mehran Kardar

Abstract:

The Casimir force between macroscopic bodies depends strongly on their shape and orientation. To study this geometry dependence in the case of two deformed metal plates, we use a path integral quantization of the electromagnetic field which properly treats the many-body nature of the interaction, going beyond the commonly used pairwise summation (PWS) of van der Waals forces. For arbitrary deformations we provide an analytical result for the deformation induced change in Casimir energy, which is exact to second order in the deformation amplitude. For the specific case of sinusoidally corrugated plates, we calculate both the normal and the lateral Casimir forces. The deformation induced change in the Casimir interaction of a flat and a corrugated plate shows an interesting crossover as a function of the ratio of the mean platedistance H to the corrugation length \lambda: For \lambda \ll H we find a slower decay \sim H^{-4}, compared to the H^{-5} behavior predicted by PWS which we show to be valid only for \lambda \gg H. The amplitude of the lateral force between two corrugated plates which are out of registry is shown to have a maximum at an optimal wavelength of \lambda \approx 2.5 H. With increasing H/\lambda \gtrsim 0.3 the PWS approach becomes a progressively worse description of the lateral force due to many-body effects. These results may be of relevance for the design and operation of novel microelectromechanical systems (MEMS) and other nanoscale devices.
Details from ArXiV
More details from the publisher

Conformational instability of rodlike polyelectrolytes due to counterion fluctuations.

Phys Rev E Stat Nonlin Soft Matter Phys 66:5 Pt 1 (2002) 051802

Authors:

Ramin Golestanian, Tanniemola B Liverpool

Abstract:

The effective elasticity of highly charged stiff polyelectrolytes is studied in the presence of counterions, with and without added salt. The rigid polymer conformations may become unstable due to an effective attraction induced by counterion density fluctuations. Instabilities at the longest, or intermediate length scales, may signal collapse to globule, or necklace states, respectively. In the presence of added salt, a generalized electrostatic persistence length is obtained, which has a nontrivial dependence on the Debye screening length. It is also found that the onset of conformational instability is a reentrant phenomenon as a function of polyelectrolyte length for the unscreened case, and the Debye length or salt concentration for the screened case. This may be relevant in understanding the experimentally observed reentrant condensation of DNA.
More details from the publisher
More details
Details from ArXiV

Radial distribution function of rod-like polyelectrolytes.

Eur Phys J E Soft Matter 9:1 (2002) 41-46

Authors:

R Zandi, J Rudnick, R Golestanian

Abstract:

We study the effect of electrostatic interactions on the distribution function of the end-to-end distance of a single polyelectrolyte chain in the rod-like limit. The extent to which the radial distribution function of a polyelectrolyte is reproduced by that of a wormlike chain with an adjusted effective persistence length is investigated. Strong evidence is found for a universal scaling formula connecting the effective persistence length of a polyelectrolyte with the strength of the electrostatic interaction and the Debye screening length.
More details from the publisher
Details from ArXiV

Erratum: Relaxation of a moving contact line and the Landau-Levich effect (Europhysics Letters (2001) 55:2 (228-234))

Europhysics Letters 57:2 (2002) 304

Authors:

R Golestanian, E Raphaël
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 60
  • Page 61
  • Page 62
  • Page 63
  • Current page 64
  • Page 65
  • Page 66
  • Page 67
  • Page 68
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet