Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Space and Planets (artistic image)
Credit: hdwallpaperim.com/

Gianluca Gregori

Professor of Physics

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laboratory astroparticle physics
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Gianluca.Gregori@physics.ox.ac.uk
Telephone: 01865 (2)82639
Clarendon Laboratory, room 029.8
  • About
  • Publications

Experimental characterization of picosecond laser interaction with solid targets.

Phys Rev E Stat Nonlin Soft Matter Phys 77:5 Pt 2 (2008) 056403

Authors:

D Jung, LA Gizzi, L Labate, D Neely, MM Notley, PP Rajeev, M Roth, G Gregori

Abstract:

We have characterized the plasma produced by a picosecond laser pulse using x-ray spectroscopy. High-resolution high-sensitivity spectra of K -shell emission from a Ti plasma have been obtained, showing a strong contribution from multiply ionized ions. Hydrodynamic and collisional-radiative codes are used to extract the plasma temperature and density from these measurements. We show that our measurements can provide benchmarks for particle-in-cell (PIC) simulations of preplasma conditions in ultraintense laser-matter interactions.
More details from the publisher
More details

Laser heating of solid matter by light-pressure-driven shocks at ultrarelativistic intensities.

Phys Rev Lett 100:16 (2008) 165002

Authors:

KU Akli, SB Hansen, AJ Kemp, RR Freeman, FN Beg, DC Clark, SD Chen, D Hey, SP Hatchett, K Highbarger, E Giraldez, JS Green, G Gregori, KL Lancaster, T Ma, AJ MacKinnon, P Norreys, N Patel, J Pasley, C Shearer, RB Stephens, C Stoeckl, M Storm, W Theobald, LD Van Woerkom, R Weber, MH Key

Abstract:

The heating of solid targets irradiated by 5 x 10(20) W cm(-2), 0.8 ps, 1.05 microm wavelength laser light is studied by x-ray spectroscopy of the K-shell emission from thin layers of Ni, Mo, and V. A surface layer is heated to approximately 5 keV with an axial temperature gradient of 0.6 microm scale length. Images of Ni Ly(alpha) show the hot region has 100 G bar light pressure compresses the preformed plasma and drives a shock into the solid, heating a thin layer.
More details from the publisher
More details
More details

Laser heating of solid matter by light-pressure-driven shocks at ultrarelativistic intensities

Physical Review Letters 100:16 (2008)

Authors:

KU Akli, SB Hansen, AJ Kemp, RR Freeman, FN Beg, DC Clark, SD Chen, D Hey, SP Hatchett, K Highbarger, E Giraldez, JS Green, G Gregori, KL Lancaster, T Ma, AJ MacKinnon, P Norreys, N Patel, J Pasley, C Shearer, RB Stephens, C Stoeckl, M Storm, W Theobald, LD Van Woerkom, R Weber, MH Key

Abstract:

The heating of solid targets irradiated by 5×1020Wcm-2, 0.8 ps, 1.05μm wavelength laser light is studied by x-ray spectroscopy of the K-shell emission from thin layers of Ni, Mo, and V. A surface layer is heated to ∼5keV with an axial temperature gradient of 0.6μm scale length. Images of Ni Lyα show the hot region has ≤25μm diameter. These data are consistent with collisional particle-in-cell simulations using preformed plasma density profiles from hydrodynamic modeling which show that the >100Gbar light pressure compresses the preformed plasma and drives a shock into the solid, heating a thin layer. © 2008 The American Physical Society.
More details from the publisher

Probing warm dense lithium by inelastic X-ray scattering

Nature Physics 4:12 (2008) 940-944

Authors:

E García Saiz, G Gregori, DO Gericke, J Vorberger, B Barbrel, RJ Clarke, RR Freeman, SH Glenzer, FY Khattak, M Koenig, OL Landen, D Neely, P Neumayer, MM Notley, A Pelka, D Price, M Roth, M Schollmeier, C Spindloe, RL Weber, L Van Woerkom, K Wünsch, D Riley

Abstract:

One of the grand challenges of contemporary physics is understanding strongly interacting quantum systems comprising such diverse examples as ultracold atoms in traps, electrons in high-temperature superconductors and nuclear matter. Warm dense matter, defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of such interacting matter. Moreover, the study of warm dense matter states has practical applications for controlled thermonuclear fusion, where it is encountered during the implosion phase, and it also represents laboratory analogues of astrophysical environments found in the core of planets and the crusts of old stars. Here we demonstrate how warm dense matter states can be diagnosed and structural properties can be obtained by inelastic X-ray scattering measurements on a compressed lithium sample. Combining experiments and ab initio simulations enables us to determine its microscopic state and to evaluate more approximate theoretical models for the ionic structure. © 2008 Macmillan Publishers Limited. All rights reserved.
More details from the publisher
More details

Compton scattering measurements from dense plasmas

5TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA2007) 112 (2008) ARTN 032071

Authors:

SH Glenzer, P Neumayer, T Doeppner, OL Landen, RW Lee, RJ Wallace, S Weber, HJ Lee, AL Kritcher, R Falcone, SP Regan, H Sawada, DD Meyerhofer, G Gregori, C Fortmann, V Schwarz, R Redmer
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 62
  • Page 63
  • Page 64
  • Page 65
  • Current page 66
  • Page 67
  • Page 68
  • Page 69
  • Page 70
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet