Diagnosing direct-drive, shock-heated, and compressed plastic planar foils with noncollective spectrally resolved x-ray scattering
Physics of Plasmas 14:12 (2007)
Abstract:
The electron temperature (Te) and average ionization (Z) of nearly Fermi-degenerate, direct-drive, shock-heated, and compressed plastic planar foils were investigated using noncollective spectrally resolved x-ray scattering on the OMEGA Laser System [T. R. Boehly, Opt. Commun. 133, 495 (1997)]. Plastic (CH) and Br-doped CH foils were driven with six beams, having an overlapped intensity of ∼1× 1014 W cm2 and generating ∼15 Mbar pressure in the foil. The plasma conditions of the foil predicted with a one-dimensional (1-D) hydrodynamics code are Te ∼10 eV, Z∼1, mass density ρ ∼4 g cm3, and electron density ne ∼3× 1023 cm-3. The uniformly compressed portion of the target was probed with 9.0-keV x rays from a Zn Heα backlighter created with 18 additional tightly focused beams. The x rays scattered at either 90° or 120° were dispersed with a Bragg crystal spectrometer and recorded with an x-ray framing camera. An examination of the scattered x-ray spectra reveals that an upper limit of Z∼2 and Te =20 eV are inferred from the spectral line shapes of the elastic Rayleigh and inelastic Compton components. Low average ionizations (i.e., Z<2) cannot be accurately diagnosed in this experiment due to the difficulties in distinguishing delocalized valence and free electrons. Trace amounts of Br in the CH foil (i.e., 2% atomic concentration) are shown to increase the sensitivity of the noncollective, spectrally resolved x-ray scattering to changes in the average ionization. The experimentally inferred electron temperatures are comparable to the 1-D predictions. © 2007 American Institute of Physics.Creation of hot dense matter in short-pulse laser-plasma interaction with tamped titanium foils
Physics of Plasmas 14:10 (2007)
Abstract:
Dense titanium plasma has been heated to an electron temperature up to 1300 eV with a 100 TW, high intensity short-pulse laser. The experiments were conducted using Ti foils (5 μm thick) sandwiched between layers of either aluminum (1 or 2 μm thick) or plastic (2 μm thick) to prevent the effects of prepulse. Targets of two different sizes, i.e., 250 × 250 μm 2 and 1×1 mm2 were used. Spectral measurements of the Ti inner-shell emission, in the region between 4 and 5 keV, were taken from, the front-side (i.e., the laser illuminated side) of the target. The data show large shifts in the Kα emission from open-shell ions, suggesting bulk heating of the sample at near solid density, which was largest for reduced mass targets. Comparison with collisional radiative and 2D radiation hydrodynamics codes indicates a peak temperature of Te,peak= 1300 eV of solid titanium plasma in ∼0.2 μm thin layer. Higher bulk temperature (T e,bulk=100 eV) for aluminum tamped compared to CH tamped targets (Te,bulk=40 eV) was observed. A possible explanation for this difference is described whereby scattering due to the nuclear charge of the tamping material leads to modified electron transport behavior. © 2007 American Institute of Physics.Direct observation of strong ion coupling in laser-driven shock-compressed targets
Physical Review Letters 99:13 (2007)
Abstract:
In this Letter we report on a near collective x-ray scattering experiment on shock-compressed targets. A highly coupled Al plasma was generated and probed by spectrally resolving an x-ray source forward scattered by the sample. A significant reduction in the intensity of the elastic scatter was observed, which we attribute to the formation of an incipient long-range order. This speculation is confirmed by x-ray scattering calculations accounting for both electron degeneracy and strong coupling effects. Measurements from rear side visible diagnostics are consistent with the plasma parameters inferred from x-ray scattering data. These results give the experimental evidence of the strongly coupled ionic dynamics in dense plasmas. © 2007 The American Physical Society.Spectrally resolved X-ray scatter from laser-shock-driven plasmas
LASER PART BEAMS 25:3 (2007) 465-469
Abstract:
We report spectrally resolved X-ray scattering data from shock compressed foils illustrating the feasibility of X-ray Thomson scattering experiment on a sub-kilo joule laser system. Sandwich targets consisting of CH/Al/CH were shock compressed using similar to 1 ns laser pulses. Separate 270 ps laser pulses were used to generate an intense source of Ti-He-alpha (1s(2)-1s2p(1)P) radiation which was used as a probing source of 4.75 keV photons. The spectrum of scattered photons was recorded at a scattering angle of 82 degrees with a CCD fitted spectrometer using a PET crystal in von-Hamos geometry. Although spectral resolution was used to separate the scatter from any background, the resolution was limited by source broadening. The relative level of scatter at different times in the sample history was measured by varying the delay between the shock driving beams and the back-lighter beams. We have compared the scatter spectra with simulations based on two different models of the L-shell bound-free contribution.Wide angle crystal spectrometer for angularly and spectrally resolved X-ray scattering experiments.
Rev Sci Instrum 78:9 (2007) 095101