Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Space and Planets (artistic image)
Credit: hdwallpaperim.com/

Gianluca Gregori

Professor of Physics

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laboratory astroparticle physics
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Gianluca.Gregori@physics.ox.ac.uk
Telephone: 01865 (2)82639
Clarendon Laboratory, room 029.8
  • About
  • Publications

X-ray scattering measurements of radiative heating and cooling dynamics.

Phys Rev Lett 101:4 (2008) 045003

Authors:

G Gregori, SH Glenzer, KB Fournier, KM Campbell, EL Dewald, OS Jones, JH Hammer, SB Hansen, RJ Wallace, OL Landen

Abstract:

Spectrally and time-resolved x-ray scattering is used to extract the temperature and charge state evolution in a near solid density carbon foam driven by a supersonic soft x-ray heat wave. The measurements show a rapid heating of the foam material (approximately 200 eV/ns) followed by a similarly fast decline in the electron temperature as the foam cools. The results are compared to an analytic power balance model and to results from radiation-hydrodynamics simulations. Finally, the combination of charge state and temperature extracted from this known density isochorically heated plasma is used to distinguish between dense plasma ionization balance models.
More details from the publisher
More details

A reduced coupled-mode description for the electron-ion energy relaxation in dense matter

EPL 83:1 (2008)

Authors:

G Gregori, DO Gericke

Abstract:

We present a simplified model for the electron-ion energy relaxation in dense two-temperature systems that includes the effects of coupled collective modes. It also extends the standard Spitzer result to both degenerate and strongly coupled systems. Starting from the general coupled-mode description, we are able to solve analytically for the temperature relaxation time in warm dense matter and strongly coupled plasmas. This was achieved by decoupling the electron-ion dynamics and by representing the ion response in terms of the mode frequencies. The presented reduced model allows for a fast description of temperature equilibration within hydrodynamic simulations and an easy comparison for experimental investigations. For warm dense matter, both fluid and solid, the model gives a slower electron-ion equilibration than predicted by the classical Spitzer result. Copyright © EPLA, 2008.
More details from the publisher
More details

Experimental characterization of picosecond laser interaction with solid targets.

Phys Rev E Stat Nonlin Soft Matter Phys 77:5 Pt 2 (2008) 056403

Authors:

D Jung, LA Gizzi, L Labate, D Neely, MM Notley, PP Rajeev, M Roth, G Gregori

Abstract:

We have characterized the plasma produced by a picosecond laser pulse using x-ray spectroscopy. High-resolution high-sensitivity spectra of K -shell emission from a Ti plasma have been obtained, showing a strong contribution from multiply ionized ions. Hydrodynamic and collisional-radiative codes are used to extract the plasma temperature and density from these measurements. We show that our measurements can provide benchmarks for particle-in-cell (PIC) simulations of preplasma conditions in ultraintense laser-matter interactions.
More details from the publisher
More details

Laser heating of solid matter by light-pressure-driven shocks at ultrarelativistic intensities.

Phys Rev Lett 100:16 (2008) 165002

Authors:

KU Akli, SB Hansen, AJ Kemp, RR Freeman, FN Beg, DC Clark, SD Chen, D Hey, SP Hatchett, K Highbarger, E Giraldez, JS Green, G Gregori, KL Lancaster, T Ma, AJ MacKinnon, P Norreys, N Patel, J Pasley, C Shearer, RB Stephens, C Stoeckl, M Storm, W Theobald, LD Van Woerkom, R Weber, MH Key

Abstract:

The heating of solid targets irradiated by 5 x 10(20) W cm(-2), 0.8 ps, 1.05 microm wavelength laser light is studied by x-ray spectroscopy of the K-shell emission from thin layers of Ni, Mo, and V. A surface layer is heated to approximately 5 keV with an axial temperature gradient of 0.6 microm scale length. Images of Ni Ly(alpha) show the hot region has 100 G bar light pressure compresses the preformed plasma and drives a shock into the solid, heating a thin layer.
More details from the publisher
More details
More details

Laser heating of solid matter by light-pressure-driven shocks at ultrarelativistic intensities

Physical Review Letters 100:16 (2008)

Authors:

KU Akli, SB Hansen, AJ Kemp, RR Freeman, FN Beg, DC Clark, SD Chen, D Hey, SP Hatchett, K Highbarger, E Giraldez, JS Green, G Gregori, KL Lancaster, T Ma, AJ MacKinnon, P Norreys, N Patel, J Pasley, C Shearer, RB Stephens, C Stoeckl, M Storm, W Theobald, LD Van Woerkom, R Weber, MH Key

Abstract:

The heating of solid targets irradiated by 5×1020Wcm-2, 0.8 ps, 1.05μm wavelength laser light is studied by x-ray spectroscopy of the K-shell emission from thin layers of Ni, Mo, and V. A surface layer is heated to ∼5keV with an axial temperature gradient of 0.6μm scale length. Images of Ni Lyα show the hot region has ≤25μm diameter. These data are consistent with collisional particle-in-cell simulations using preformed plasma density profiles from hydrodynamic modeling which show that the >100Gbar light pressure compresses the preformed plasma and drives a shock into the solid, heating a thin layer. © 2008 The American Physical Society.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 66
  • Page 67
  • Page 68
  • Page 69
  • Current page 70
  • Page 71
  • Page 72
  • Page 73
  • Page 74
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet