Solid-density plasma characterization with x-ray scattering on the 200 J Janus laser - art. no. 10F317
REV SCI INSTRUM 77:10 (2006) F317-F317
Abstract:
We present collective x-ray scattering (CXS) measurements using a chlorine He-alpha x-ray source pumped with less than 200 J of laser energy. The experimental scattering spectra show plasmon resonances from shocked and radiatively heated samples. These experiments use only 10(12) x-ray photons at the sample of which 10(-5) have been scattered and detected with a highly efficient curved crystal spectrometer. Our results demonstrate that x-ray scattering is a viable technique on smaller laser facilities, making CXS measurements accessible to a broad scientific community. (c) 2006 American Institute of Physics.High energy density science with FELs, intense short pulse tunable X-ray sources
Proceedings of SPIE - The International Society for Optical Engineering 6261 I (2006)
Abstract:
Short pulse (< 100 fs) tunable X-ray and VUV laser sources, based on the free electron laser (FEL) concept, will be a watershed for high energy density research in several areas. These new 4 th generation light sources will have extremely high fields and short wavelength (∼.1 nm) with peak spectral brightness -photons/(s/mrad 2/mm 2/0.1% bandwidth- 10 10 greater than 3 rd generation light sources. We briefly discuss several applications: the creation of warm dense matter (WDM), probing of near solid density plasmas, and laser-plasma spectroscopy of ions in plasmas. The study of dense plasmas has been severely hampered by the fact that laser-based probes that can directly access the matter in this regime have been unavailable and these new 4 th generation sources will remove these restrictions. Finally, we present the plans for a user-oriented set of facilities that will incorporate high-energy, intense short-pulse, and x-ray lasers at the first x-ray FEL, the LCLS to be opened at SLAC in 2009.Generalized x-ray scattering cross section from nonequilibrium plasmas.
Phys Rev E Stat Nonlin Soft Matter Phys 74:2 Pt 2 (2006) 026402
Abstract:
We propose a modified x-ray form factor that describes the scattering cross section in warm dense matter valid for both the plasma and the solid (crystalline) state. Our model accounts for the effect of lattice correlations on the electron-electron dynamic structure, as well as provides a smooth transition between the solid and the plasma scattering cross sections. In addition, we generalize the expression of the dynamic structure in the case of a two-temperature system (with different electron and ion temperatures). This work provides a unified description of the x-ray scattering processes in warm and dense matter, as the one encountered in inertial confinement fusion, laboratory astrophysics, material science, and high-energy density physics and it can be used to verify temperature relaxation mechanisms in such environments.Efficient coupling of 527 nm laser beam power to a long scalelength plasma
J PHYS IV 133 (2006) 321-324
Abstract:
We experimentally demonstrate that application of laser smoothing schemes including smoothing by spectral dispersion (SSD) and polarization smoothing (PS) increases the intensity range for efficient coupling of frequency doubled (527 nm) laser light to a long scalelength plasma with n(e)/n(cr) = 0.14 and T-e = 2 keV.Overview of recent progress in US fast ignition research
J PHYS IV 133 (2006) 95-100