Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Space and Planets (artistic image)
Credit: hdwallpaperim.com/

Gianluca Gregori

Professor of Physics

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Laboratory astroparticle physics
  • Oxford Centre for High Energy Density Science (OxCHEDS)
Gianluca.Gregori@physics.ox.ac.uk
Telephone: 01865 (2)82639
Clarendon Laboratory, room 029.8
  • About
  • Publications

Soft X-Ray Thomson Scattering in Warm Dense Matter at FLASH

Chapter in Ultrafast Phenomena XVI, Springer Nature 92 (2009) 241-243

Authors:

RR Fäustlin, S Toleikis, Th Bornath, L Cao, T Döppner, S Düsterer, E Förster, C Fortmann, SH Glenzer, S Göde, G Gregori, A Höll, R Irsig, T Laarmann, HJ Lee, KH Meiwes-Broer, A Przystawik, P Radcliffe, R Redmer, H Reinholz, G Röpke, R Thiele, J Tiggesbäumker, NX Truong, I Uschmann, U Zastrau, Th Tschentscher
More details from the publisher

Bremsstrahlung and line spectroscopy of warm dense aluminum plasma heated by xuv free-electron-laser radiation

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 78:6 (2008)

Authors:

U Zastrau, C Fortmann, RR Fäustlin, LF Cao, T Döppner, S Düsterer, SH Glenzer, G Gregori, T Laarmann, HJ Lee, A Przystawik, P Radcliffe, H Reinholz, G Röpke, R Thiele, J Tiggesbäumker, NX Truong, S Toleikis, I Uschmann, A Wierling, T Tschentscher, E Förster, R Redmer

Abstract:

We report the creation of solid-density aluminum plasma using free-electron laser (FEL) radiation at 13.5 nm wavelength. Ultrashort pulses were focused on a bulk Al target, yielding an intensity of 2× 1014/cm2. The radiation emitted from the plasma was measured using an xuv spectrometer. Bremsstrahlung and line intensity ratios yield consistent electron temperatures of about 38 eV, supported by radiation hydrodynamics simulations. This shows that xuv FELs heat up plasmas volumetrically and homogeneously at warm-dense-matter conditions, which are accurately characterized by xuv spectroscopy. © 2008 The American Physical Society.
More details from the publisher
More details
More details

Image plate response for conditions relevant to laser-plasma interaction experiments

Measurement Science and Technology 19:9 (2008)

Authors:

IJ Paterson, RJ Clarke, NC Woolsey, G Gregori

Abstract:

We have measured the absolute response and detective quantum efficiency of image plates (IPs) for 5.9 keV x-rays using a calibrated iron-55 source. The types of IPs considered in this study are now commonly used as x-ray detectors in high-intensity laser-plasma interaction experiments, where conventional CCD fails because of the intense electromagnetic pulse that follows a high-intensity shot. Since the plates are not read out immediately after each laser shot, a detailed fading analysis of the plates is also presented. This work is important for future implementation of IPs as absolute x-ray photon detectors in large-scale laser facilities. © 2008 IOP Publishing Ltd.
More details from the publisher
More details

Plasmon resonance in warm dense matter

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 78:2 (2008)

Authors:

R Thiele, T Bornath, C Fortmann, A Höll, R Redmer, H Reinholz, G Röpke, A Wierling, SH Glenzer, G Gregori

Abstract:

Collective Thomson scattering with extreme ultraviolet light or x rays is shown to allow for a robust measurement of the free electron density in dense plasmas. Collective excitations like plasmons appear as maxima in the scattering signal. Their frequency position can directly be related to the free electron density. The range of applicability of the standard Gross-Bohm dispersion relation and of an improved dispersion relation in comparison to calculations based on the dielectric function in random phase approximation is investigated. More important, this well-established treatment of Thomson scattering on free electrons is generalized in the Born-Mermin approximation by including collisions. We show that, in the transition region from collective to noncollective scattering, the consideration of collisions is important. © 2008 The American Physical Society.
More details from the publisher
More details
More details

Evidence of short-range screening in shock-compressed aluminum plasma

Physical Review Letters 101:7 (2008)

Authors:

E García Saiz, G Gregori, FY Khattak, J Kohanoff, S Sahoo, G Shabbir Naz, S Bandyopadhyay, M Notley, RL Weber, D Riley

Abstract:

We have investigated the angular variation in elastic x-ray scattering from a dense, laser-shock-compressed aluminum foil. A comparison of the experiment with simulations using an embedded atom potential in a molecular dynamics simulation shows a significantly better agreement than simulations based on an unscreened one-component plasma model. These data illustrate, experimentally, the importance of screening for the dense plasma static structure factor. © 2008 The American Physical Society.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 65
  • Page 66
  • Page 67
  • Page 68
  • Current page 69
  • Page 70
  • Page 71
  • Page 72
  • Page 73
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet