Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Herz Group

Prof Laura Herz FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Semiconductors group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Laura.Herz@physics.ox.ac.uk
Google Scholar
Publons/WoS
  • About
  • Publications

Self-assembly of Russian doll concentric porphyrin nanorings

Journal of the American Chemical Society American Chemical Society 137:39 (2015) 12713-12718

Authors:

Sophie A Rousseaux, Juliane Q Gong, Renée Haver, Barbara Odell, Tim DW Claridge, Laura Herz, Harry L Anderson

Abstract:

Electronic communication between concentric macrocycles with wave functions that extend around their circumferences can lead to remarkable behavior, as illustrated by multiwalled carbon nanotubes and photosynthetic chlorophyll arrays. However, it is difficult to hold one π-conjugated molecular ring inside another. Here, we show that ring-in-ring complexes, consisting of a 6-porphyrin ring locked inside a 12-porphyrin ring, can be assembled by placing different metals in the two rings (zinc and aluminum). A bridging ligand with carboxylate and imidazole binding sites forms spokes between the two rings, resulting in a highly cooperative supramolecular self-assembly process. Excitation is transferred from the inner 6-ring to the outer 12-ring of this Russian doll complex within 40 ps. These complexes lead to a form of template-directed synthesis in which one nanoring promotes formation of a larger concentric homologous ring; here, the effective template is an eight-component noncovalent assembly. Russian doll templating provides a new approach to amplifying the size of a covalent nanostructure.
More details from the publisher
Details from ORA
More details
More details

Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films

Advanced Functional Materials Wiley 25:39 (2015) 6218-6227

Authors:

Rebecca L Milot, Giles Eperon, Henry J Snaith, Michael Johnston, Laura Herz

Abstract:

The photoluminescence, transmittance, charge-carrier recombination dynamics, mobility, and diffusion length of CH3NH3PbI3 are investigated in the temperature range from 8 to 370 K. Profound changes in the optoelectronic properties of this prototypical photovoltaic material are observed across the two structural phase transitions occurring at 160 and 310 K. Drude-like terahertz photoconductivity spectra at all temperatures above 80 K suggest that charge localization effects are absent in this range. The monomolecular charge-carrier recombination rate generally increases with rising temperature, indicating a mechanism dominated by ionized impurity mediated recombination. Deduced activation energies Ea associated with ionization are found to increase markedly from the room-temperature tetragonal (Ea ≈ 20 meV) to the higher-temperature cubic (Ea ≈ 200 meV) phase adopted above 310 K. Conversely, the bimolecular rate constant decreases with rising temperature as charge-carrier mobility declines, while the Auger rate constant is highly phase specific, suggesting a strong dependence on electronic band structure. The charge-carrier diffusion length gradually decreases with rising temperature from about 3 μm at -93 °C to 1.2 μm at 67 °C but remains well above the optical absorption depth in the visible spectrum. These results demonstrate that there are no fundamental obstacles to the operation of cells based on CH3NH3PbI3 under typical field conditions.
More details from the publisher
Details from ORA
More details

Charge-Carrier Dynamics and Mobilities in Formamidinium Lead Mixed-Halide Perovskites

Advanced Materials Wiley (2015) n/a-n/a

Authors:

Waqaas Rehman, Rebecca L Milot, Giles E Eperon, Christian Wehrenfennig, Jessica L Boland, Henry J Snaith, Michael B Johnston, Laura Herz

Abstract:

The mixed-halide perovskite FAPb(BryI1–y)3 is attractive for color-tunable and tandem solar cells. Bimolecular and Auger charge-carrier recombination rate constants strongly correlate with the Br content, y, suggesting a link with electronic structure. FAPbBr3 and FAPbI3 exhibit charge-carrier mobilities of 14 and 27 cm2 V−1 s−1 and diffusion lengths exceeding 1 μm, while mobilities across the mixed Br/I system depend on crystalline phase disorder.
More details from the publisher
Details from ORA
More details
More details

Terahertz Spectroscopy of Modulation Doped Core-Shell GaAs/AlGaAs Nanowires

Institute of Electrical and Electronics Engineers (IEEE) (2015) 1-1

Authors:

Jessica L Boland, Sonia Conesa-Boj, G Tütüncouglu, F Matteini, D Rüffer, A Casadei, F Gaveen, F Amaduzzi, P Parkinson, C Davies, HJ Joyce, LM Herz, A Fontcuberta I Morral, Michael B Johnston
More details
More details from the publisher

Identification of a triplet pair intermediate in singlet exciton fission in solution.

Proceedings of the National Academy of Sciences of the United States of America National Academy of Sciences 112:25 (2015) 7656-7661

Authors:

Hannah L Stern, Andrew J Musser, Simon Gelinas, Patrick Parkinson, Laura Herz, Matthew J Bruzek, John Anthony, Richard H Friend, Brian J Walker

Abstract:

Singlet exciton fission is the spin-conserving transformation of one spin-singlet exciton into two spin-triplet excitons. This exciton multiplication mechanism offers an attractive route to solar cells that circumvent the single-junction Shockley-Queisser limit. Most theoretical descriptions of singlet fission invoke an intermediate state of a pair of spin-triplet excitons coupled into an overall spin-singlet configuration, but such a state has never been optically observed. In solution, we show that the dynamics of fission are diffusion limited and enable the isolation of an intermediate species. In concentrated solutions of bis(triisopropylsilylethynyl)[TIPS]--tetracene we find rapid (<100 ps) formation of excimers and a slower (∼ 10 ns) break up of the excimer to two triplet exciton-bearing free molecules. These excimers are spectroscopically distinct from singlet and triplet excitons, yet possess both singlet and triplet characteristics, enabling identification as a triplet pair state. We find that this triplet pair state is significantly stabilized relative to free triplet excitons, and that it plays a critical role in the efficient endothermic singlet fission process.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 40
  • Page 41
  • Page 42
  • Page 43
  • Current page 44
  • Page 45
  • Page 46
  • Page 47
  • Page 48
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet