Six-coordinate zinc porphyrins for template-directed synthesis of spiro-fused nanorings.
Journal of the American Chemical Society American Chemical Society 137:45 (2015) 14256-14259
Abstract:
Five-coordinate geometry is the standard binding mode of zinc porphyrins with pyridine ligands. Here we show that pseudo-octahedral six-coordinate zinc porphyrin complexes can also be formed in solution, by taking advantage of the chelate effect. UV-vis-NIR titrations indicate that the strength of this second coordination is ca. 6-8 kJ mol(-1). We have used the formation of six-coordinate zinc porphyrin complexes to achieve the template-directed synthesis of a 3D π-conjugated spiro-fused array of 11 porphyrin units, covalently connected in a nontrivial topology. Time-resolved fluorescence anisotropy experiments show that electronic excitation delocalizes between the two perpendicular nanorings of this spiro-system within the experimental time-resolution of 270 fs.Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 Perovskite thin films
Advanced Functional Materials Wiley 25:39 (2015) 6218-6227
Abstract:
The photoluminescence, transmittance, charge-carrier recombination dynamics, mobility, and diffusion length of CH3NH3PbI3 are investigated in the temperature range from 8 to 370 K. Profound changes in the optoelectronic properties of this prototypical photovoltaic material are observed across the two structural phase transitions occurring at 160 and 310 K. Drude-like terahertz photoconductivity spectra at all temperatures above 80 K suggest that charge localization effects are absent in this range. The monomolecular charge-carrier recombination rate generally increases with rising temperature, indicating a mechanism dominated by ionized impurity mediated recombination. Deduced activation energies Ea associated with ionization are found to increase markedly from the room-temperature tetragonal (Ea ≈ 20 meV) to the higher-temperature cubic (Ea ≈ 200 meV) phase adopted above 310 K. Conversely, the bimolecular rate constant decreases with rising temperature as charge-carrier mobility declines, while the Auger rate constant is highly phase specific, suggesting a strong dependence on electronic band structure. The charge-carrier diffusion length gradually decreases with rising temperature from about 3 μm at -93 °C to 1.2 μm at 67 °C but remains well above the optical absorption depth in the visible spectrum. These results demonstrate that there are no fundamental obstacles to the operation of cells based on CH3NH3PbI3 under typical field conditions. The photoconductivity in CH3NH3PbI3 thin films is investigated from 8 to 370 K across three structural phases. Analysis of the charge-carrier recombination dynamics reveals a variety of starkly differing recombination mechanisms. Evidence of charge-carrier localization is observed only at low temperature. High charge mobility and diffusion length are maintained at high temperature beyond the tetragonal-to-cubic phase transition at ≈310 K.Self-assembly of Russian doll concentric porphyrin nanorings
Journal of the American Chemical Society American Chemical Society 137:39 (2015) 12713-12718
Abstract:
Electronic communication between concentric macrocycles with wave functions that extend around their circumferences can lead to remarkable behavior, as illustrated by multiwalled carbon nanotubes and photosynthetic chlorophyll arrays. However, it is difficult to hold one π-conjugated molecular ring inside another. Here, we show that ring-in-ring complexes, consisting of a 6-porphyrin ring locked inside a 12-porphyrin ring, can be assembled by placing different metals in the two rings (zinc and aluminum). A bridging ligand with carboxylate and imidazole binding sites forms spokes between the two rings, resulting in a highly cooperative supramolecular self-assembly process. Excitation is transferred from the inner 6-ring to the outer 12-ring of this Russian doll complex within 40 ps. These complexes lead to a form of template-directed synthesis in which one nanoring promotes formation of a larger concentric homologous ring; here, the effective template is an eight-component noncovalent assembly. Russian doll templating provides a new approach to amplifying the size of a covalent nanostructure.Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films
Advanced Functional Materials Wiley 25:39 (2015) 6218-6227
Abstract:
The photoluminescence, transmittance, charge-carrier recombination dynamics, mobility, and diffusion length of CHCharge-Carrier Dynamics and Mobilities in Formamidinium Lead Mixed-Halide Perovskites
Advanced Materials Wiley (2015) n/a-n/a