Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Herz Group

Prof Laura Herz FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Semiconductors group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Laura.Herz@physics.ox.ac.uk
Google Scholar
Publons/WoS
  • About
  • Publications

A Molecular Nanotube with Three-Dimensional π-Conjugation

Angewandte Chemie - International Edition 54:25 (2015) 7344-7348

Authors:

P Neuhaus, A Cnossen, JQ Gong, LM Herz, HL Anderson

Abstract:

© 2015 The Authors. A π-conjugated twelve-porphyrin tube is synthesized in 32% yield by a template-directed coupling reaction that joins together six porphyrin dimers, forming twelve new C-C bonds. The nanotube has two bound templates, enclosing an internal volume of approximately 4.5nm < sup > 3 < /sup > . Its UV/Vis/NIR absorption and fluorescence spectra resemble those of a previously reported six-porphyrin ring, but are red-shifted by approximately 300cm < sup > -1 < /sup > , reflecting increased conjugation. Ultrafast fluorescence spectroscopy demonstrates extensive excited-state delocalization. Transfer of electronic excitation from an initially formed state polarized in the direction of the nanotube axis (zaxis) to an excited state polarized in the xy plane occurs within 200fs, resulting in a negative fluorescence anisotropy on excitation at 742nm.
More details from the publisher

A Molecular Nanotube with Three-Dimensional π-Conjugation.

Angewandte Chemie (Weinheim an der Bergstrasse, Germany) 127:25 (2015) 7452-7456

Authors:

Patrik Neuhaus, Arjen Cnossen, Juliane Q Gong, Laura M Herz, Harry L Anderson

Abstract:

A π-conjugated twelve-porphyrin tube is synthesized in 32 % yield by a template-directed coupling reaction that joins together six porphyrin dimers, forming twelve new C-C bonds. The nanotube has two bound templates, enclosing an internal volume of approximately 4.5 nm3. Its UV/Vis/NIR absorption and fluorescence spectra resemble those of a previously reported six-porphyrin ring, but are red-shifted by approximately 300 cm-1, reflecting increased conjugation. Ultrafast fluorescence spectroscopy demonstrates extensive excited-state delocalization. Transfer of electronic excitation from an initially formed state polarized in the direction of the nanotube axis (z axis) to an excited state polarized in the xy plane occurs within 200 fs, resulting in a negative fluorescence anisotropy on excitation at 742 nm.
More details from the publisher
More details

Enhanced Amplified Spontaneous Emission in Perovskites using a Flexible Cholesteric Liquid Crystal Reflector

Nano letters American Chemical Society 15:8 (2015) 4935-4941

Authors:

Samuel D Stranks, Simon M Wood, Konrad Wojciechowski, Felix Deschler, Michael Saliba, Hitesh Khandelwal, Jay B Patel, Steve J Elston, Laura Herz, Michael Johnston, Albertus PHJ Schenning, Michael G Debije, Moritz Riede, Stephen M Morris, Henry J Snaith

Abstract:

Organic-inorganic perovskites are highly promising solar cell materials with laboratory-based power conversion efficiencies already matching those of established thin film technologies. Their exceptional photovoltaic performance is in part attributed to the presence of efficient radiative recombination pathways, thereby opening up the possibility of efficient light-emitting devices. Here, we demonstrate optically pumped amplified spontaneous emission (ASE) at 780 nm from a 50 nm-thick film of CH3NH3PbI3 perovskite that is sandwiched within a cavity composed of a thin-film (∼7 μm) cholesteric liquid crystal (CLC) reflector and a metal back-reflector. The threshold fluence for ASE in the perovskite film is reduced by at least two orders of magnitude in the presence of the CLC reflector, which results in a factor of two reduction in threshold fluence compared to previous reports. We consider this to be due to improved coupling of the oblique and out-of-plane modes that are reflected into the bulk in addition to any contributions from cavity modes. Furthermore, we also demonstrate enhanced ASE on flexible reflectors and discuss how improvements in the quality factor and reflectivity of the CLC layers could lead to single-mode lasing using CLC reflectors. Our work opens up the possibility of fabricating widely wavelength-tunable "mirror-less" single-mode lasers on flexible substrates, which could find use in applications such as flexible displays and friend or foe identification.
More details from the publisher
Details from ORA
More details
More details

A Molecular Nanotube with Three-Dimensional π-Conjugation.

Angewandte Chemie (International ed. in English) Wiley 54:25 (2015) 7344-7348

Authors:

Patrik Neuhaus, Arjen Cnossen, Julianne Q Gong, Laura Herz, Harry Anderson

Abstract:

A π-conjugated twelve-porphyrin tube is synthesized in 32% yield by a template-directed coupling reaction that joins together six porphyrin dimers, forming twelve new C-C bonds. The nanotube has two bound templates, enclosing an internal volume of approximately 4.5 nm(3). Its UV/Vis/NIR absorption and fluorescence spectra resemble those of a previously reported six-porphyrin ring, but are red-shifted by approximately 300 cm(-1), reflecting increased conjugation. Ultrafast fluorescence spectroscopy demonstrates extensive excited-state delocalization. Transfer of electronic excitation from an initially formed state polarized in the direction of the nanotube axis (z axis) to an excited state polarized in the xy plane occurs within 200 fs, resulting in a negative fluorescence anisotropy on excitation at 742 nm.
More details from the publisher
Details from ORA
More details
More details

Fast charge-carrier trapping in TiO2 nanotubes

Journal of Physical Chemistry C American Chemical Society 119:17 (2015) 9159-9168

Authors:

Christian Wehrenfennig, CM Palumbiny, Henry J Snaith, Michael Johnston, L Schmidt-Mende, Laura Herz

Abstract:

One-dimensional semiconductors such as nanowires and nanotubes are attractive materials for incorporation in photovoltaic devices as they potentially offer short percolation pathways to charge-collecting contacts. We report the observation of free-electron lifetimes in TiO2 nanotubes of the order of tens of picoseconds. These lifetimes are surprisingly short compared to those determined in films of TiO2 nanoparticles. Samples of ordered nanotube arrays with several different tube wall thicknesses were fabricated by anodization and have been investigated by means of optical-pump-terahertz-probe (OPTP) spectroscopy, which allows measurement of transient photoinduced conductivity with picosecond resolution. Our results indicate a two-stage decay of the photoexcited electron population. We attribute the faster component to temporary immobilization of charge in shallow trap states, from which electrons can detrap again by thermal excitation. The slower component most likely reflects irreversible trapping in states deeper below the conduction band edge. Free-electron lifetimes associated with shallow trapping appear to be independent of the tube wall thickness and have very similar values for electrons directly photoexcited in the material and for those injected from an attached photoexcited dye. These results suggest that trap states are not predominantly located at the surface of the tubes. The effective THz charge-carrier mobility in the TiO2 nanotubes is determined (0.1-0.4 cm2/(Vs)) and found to be within the same range as carrier mobilities reported for TiO2 nanoparticles. Implications for the relative performance of these nanostructures in dye-sensitized solar cells are discussed.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 41
  • Page 42
  • Page 43
  • Page 44
  • Current page 45
  • Page 46
  • Page 47
  • Page 48
  • Page 49
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet