Electron mobility and injection dynamics in mesoporous ZnO, SnO₂, and TiO₂ films used in dye-sensitized solar cells.
ACS Nano 5:6 (2011) 5158-5166
Abstract:
High-performance dye-sensitized solar cells are usually fabricated using nanostructured TiO(2) as a thin-film electron-collecting material. However, alternative metal-oxides are currently being explored that may offer advantages through ease of processing, higher electron mobility, or interface band energetics. We present here a comparative study of electron mobility and injection dynamics in thin films of TiO(2), ZnO, and SnO(2) nanoparticles sensitized with Z907 ruthenium dye. Using time-resolved terahertz photoconductivity measurements, we show that, for ZnO and SnO(2) nanoporous films, electron injection from the sensitizer has substantial slow components lasting over tens to hundreds of picoseconds, while for TiO(2), the process is predominantly concluded within a few picoseconds. These results correlate well with the overall electron injection efficiencies we determine from photovoltaic cells fabricated from identical nanoporous films, suggesting that such slow components limit the overall photocurrent generated by the solar cell. We conclude that these injection dynamics are not substantially influenced by bulk energy level offsets but rather by the local environment of the dye-nanoparticle interface that is governed by dye binding modes and densities of states available for injection, both of which may vary from site to site. In addition, we have extracted the electron mobility in the three nanoporous metal-oxide films at early time after excitation from terahertz conductivity measurements and compared these with the time-averaged, long-range mobility determined for devices based on identical films. Comparison with established values for single-crystal Hall mobilities of the three materials shows that, while electron mobility values for nanoporous TiO(2) films are approaching theoretical maximum values, both early time, short distance and interparticle electron mobility in nanoporous ZnO or SnO(2) films offer considerable scope for improvement.Directing energy transfer in discrete one-dimensional oligonucleotide-templated assemblies.
Chem Commun (Camb) 47:3 (2011) 884-886
Abstract:
Monodisperse DNA-templated one dimensional dye assemblies have been constructed in which the energy transfer can be directed. Fluorescence experiments suggest an optimum transfer efficiency for stacks of 30 bases long.Ultrafast charge separation at a polymer-single-walled carbon nanotube molecular junction.
Nano Lett 11:1 (2011) 66-72
Abstract:
We have investigated the charge photogeneration dynamics at the interface formed between single-walled carbon nanotubes (SWNTs) and poly(3-hexylthiophene) (P3HT) using a combination of femtosecond spectroscopic techniques. We demonstrate that photoexcitation of P3HT forming a single molecular layer around a SWNT leads to an ultrafast (∼430 fs) charge transfer between the materials. The addition of excess P3HT leads to long-term charge separation in which free polarons remain separated at room temperature. Our results suggest that SWNT-P3HT blends incorporating only small fractions (1%) of SWNTs allow photon-to-charge conversion with efficiencies comparable to those for conventional (60:40) P3HT-fullerene blends, provided that small-diameter tubes are individually embedded in the P3HT matrix.Energy Transfer in Single-Stranded DNA-Templated Stacks of Naphthalene Chromophores
JOURNAL OF PHYSICAL CHEMISTRY C 115:21 (2011) 10550-10560
Surface Energy Relay Between Cosensitized Molecules in Solid-State Dye-Sensitized Solar Cells
JOURNAL OF PHYSICAL CHEMISTRY C 115:46 (2011) 23204-23208