Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Herz Group

Prof Laura Herz FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Semiconductors group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Laura.Herz@physics.ox.ac.uk
Google Scholar
Publons/WoS
  • About
  • Publications

Ultrafast terahertz conductivity dynamics in mesoporous TiO2: Influence of dye sensitization and surface treatment in solid-state dye-sensitized solar cells

Journal of Physical Chemistry C 114:2 (2010) 1365-1371

Authors:

P Tiwana, P Parkinson, MB Johnston, HJ Snaith, LM Herz

Abstract:

We have used optical-pump terahertz-probe spectroscopy to explore the photoinduced conductivity dynamics in mesoporous anatase TiO2 films, commonly employed as the electron-transporting electrode in dye-sensitized solar cells. We find an intrinsic mobility value of 0.1 cm2/(V s) and diffusion length of ∼20 nm for electron motion through the TiO2 matrix. The photoconductivity dynamics in TiO2 films, both before and after sensitization with a ruthenium bypyridyl complex termed Z907, were examined in order to study the charge injection, trapping, and recombination time scales. We observe a biphasic charge injection from Z907, with a fast sub-500 fs component, followed by a slower 70-200 ps component. This is followed by photoconductivity decay over the first few nanoseconds, predominantly reflecting charge carrier trapping. In addition, we have utilized terahertz spectroscopy to investigate the influence of treating the titania surface with TiCl4 on early-time charge dynamics. In the solar cells, surface treatment of the mesoporous TiO2 with TiCl4 is critical to enable efficient operation. Here, we find that neither early-time charge mobility nor charge injection rate or decay times are significantly affected by the treatment, which suggests that it may, instead, have an impact on phenomena occurring on longer time scales. © 2010 American Chemical Society.
More details from the publisher
More details

Impact of nuclear lattice relaxation on the excitation energy transfer along a chain of π-conjugated molecules

PHYSICAL REVIEW B 81:8 (2010) ARTN 085438

Authors:

SA Schmid, R Abbel, APHJ Schenning, EW Meijer, LM Herz
More details from the publisher

Analyzing the molecular weight distribution in supramolecular polymers.

J Am Chem Soc 131:48 (2009) 17696-17704

Authors:

Stephan A Schmid, Robert Abbel, Albertus PH Schenning, EW Meijer, Rint P Sijbesma, Laura M Herz

Abstract:

We have investigated the formation process of supramolecular linear polymer chains and its influence on the resulting chain length distribution function. For this purpose, we explored the migration of excitation energy between oligofluorene units coupled together through quadruple hydrogen-bonding groups to form linear chains that are terminated by oligophenylene vinylene end-caps acting as energy traps. The energy transfer dynamics from the main chain to the chain end was monitored experimentally using time-resolved PL spectroscopy and compared to an equivalent Monte Carlo simulation incorporating information on the structure of the chains, the transition transfer rates, and various weight distribution trial functions. We find that the assumption of a Flory distribution of chain lengths leads to excellent agreement between experimental and simulated data for a wide range of end-cap concentrations. On the other hand, both a Poisson function and a simplified assumption of a monodisperse distribution significantly underestimate the presence of long chains in the ensemble. Our results therefore show that supramolecular polymerization is a steplike process equivalent to polycondensation reactions in linear covalent polymers. These findings emphasize that equal reactivity of the supramolecular building blocks leads to a dynamic growth process for the supramolecular chain involving all chain components at all times.
More details from the publisher
More details

Terahertz excitonic response of isolated single-walled carbon nanotubes

Journal of Physical Chemistry C 113:42 (2009) 18106-18109

Authors:

X Xu, K Chuang, RJ Nicholas, MB Johnston, LM Herz

Abstract:

We have investigated the ultrafast far-infrared transmission of isolated single-walled carbon nanotubes using optical-pump THz-probe spectroscopy. The THz dielectric response is dominated by excitons with an initial, rapid decay due to Auger recombination followed by a slow decay of isolated single excitons. Frequencydependent analysis of the photomduced dielectric function suggest an internal excitonic excitation at ∼11 meV with further low-frequency (∼0.6 and 1.4 THz) absorption features at high densities ascribed to exciton complexes. A featureless conductivity bleaching is attributed to an exciton-induced reduction in the mobility of free carriers caused by phase-space filling. © 2009 American Chemical Society.
More details from the publisher
More details

Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy.

Nano Lett 9:9 (2009) 3349-3353

Authors:

Patrick Parkinson, Hannah J Joyce, Qiang Gao, Hark Hoe Tan, Xin Zhang, Jin Zou, Chennupati Jagadish, Laura M Herz, Michael B Johnston

Abstract:

We have used transient terahertz photoconductivity measurements to assess the efficacy of two-temperature growth and core-shell encapsulation techniques on the electronic properties of GaAs nanowires. We demonstrate that two-temperature growth of the GaAs core leads to an almost doubling in charge-carrier mobility and a tripling of carrier lifetime. In addition, overcoating the GaAs core with a larger-bandgap material is shown to reduce the density of surface traps by 82%, thereby enhancing the charge conductivity.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 53
  • Page 54
  • Page 55
  • Page 56
  • Current page 57
  • Page 58
  • Page 59
  • Page 60
  • Page 61
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet