Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Herz Group

Prof Laura Herz FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Semiconductors group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Laura.Herz@physics.ox.ac.uk
Google Scholar
Publons/WoS
  • About
  • Publications

Terahertz excitonic response of isolated single-walled carbon nanotubes

Journal of Physical Chemistry C 113:42 (2009) 18106-18109

Authors:

X Xu, K Chuang, RJ Nicholas, MB Johnston, LM Herz

Abstract:

We have investigated the ultrafast far-infrared transmission of isolated single-walled carbon nanotubes using optical-pump THz-probe spectroscopy. The THz dielectric response is dominated by excitons with an initial, rapid decay due to Auger recombination followed by a slow decay of isolated single excitons. Frequencydependent analysis of the photomduced dielectric function suggest an internal excitonic excitation at ∼11 meV with further low-frequency (∼0.6 and 1.4 THz) absorption features at high densities ascribed to exciton complexes. A featureless conductivity bleaching is attributed to an exciton-induced reduction in the mobility of free carriers caused by phase-space filling. © 2009 American Chemical Society.
More details from the publisher
More details

Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy.

Nano Lett 9:9 (2009) 3349-3353

Authors:

Patrick Parkinson, Hannah J Joyce, Qiang Gao, Hark Hoe Tan, Xin Zhang, Jin Zou, Chennupati Jagadish, Laura M Herz, Michael B Johnston

Abstract:

We have used transient terahertz photoconductivity measurements to assess the efficacy of two-temperature growth and core-shell encapsulation techniques on the electronic properties of GaAs nanowires. We demonstrate that two-temperature growth of the GaAs core leads to an almost doubling in charge-carrier mobility and a tripling of carrier lifetime. In addition, overcoating the GaAs core with a larger-bandgap material is shown to reduce the density of surface traps by 82%, thereby enhancing the charge conductivity.
More details from the publisher
More details

Conductivity of Nanoporous InP Membranes Investigated Using Terahertz Spectroscopy

Institute of Electrical and Electronics Engineers (IEEE) (2008) 707-708

Authors:

SKE Merchant, J Lloyd-Hughes, P Parkinson, LM Herz, MB Johnston, L Sirbu, IM Tiginyanu
More details from the publisher

Conductivity of nanoporous InP membranes investigated using terahertz spectroscopy.

Nanotechnology 19:39 (2008) 395704

Authors:

SKE Merchant, J Lloyd-Hughes, L Sirbu, IM Tiginyanu, P Parkinson, LM Herz, MB Johnston

Abstract:

We have investigated the terahertz conductivity of extrinsic and photoexcited electrons in nanoporous indium phosphide (InP) at different pore densities and orientations. The form of electronic transport in the film was found to differ significantly from that for bulk InP. While photo-generated electrons showed Drude-like transport, the behaviour for extrinsic electrons deviated significantly from the Drude model. Time-resolved photoconductivity measurements found that carrier recombination was slow, with lifetimes exceeding 1 ns for all porosities and orientations. When considered together, these findings suggest that the surfaces created by the nanopores strongly alter the dynamics of both extrinsic and photoexcited electrons.
More details from the publisher
More details

Efficient generation of charges via below-gap photoexcitation of polymer-fullerene blend films investigated by terahertz spectroscopy

Physical Review B - Condensed Matter and Materials Physics 78:11 (2008)

Authors:

P Parkinson, J Lloyd-Hughes, MB Johnston, LM Herz

Abstract:

Using optical-pump terahertz-probe spectroscopy, we have investigated the time-resolved conductivity dynamics of photoexcited polymer-fullerene bulk heterojunction blends for two model polymers: poly[3-hexylthiophene] (P3HT) and poly[2-methoxy-5- (3,7 -dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) blended with [6,6]-phenyl-C61 butyric acid methyl ester (PCBM). The observed terahertz-frequency conductivity is characteristic of dispersive charge transport for photoexcitation both at the π-π* absorption peak (560 nm for P3HT) and significantly below it (800 nm). The photoconductivity at 800 nm is unexpectedly high, which we attribute to the presence of a charge-transfer complex. We report the excitation-fluence dependence of the photoconductivity over more than four orders of magnitude, obtained by utilizing a terahertz spectrometer based upon on either a laser oscillator or an amplifier source. The time-averaged photoconductivity of the P3HT:PCBM blend is over 20 times larger than that of P3HT, indicating that long-lived hole polarons are responsible for the high photovoltaic efficiency of polymer:fullerene blends. At early times (∼ps) the linear dependence of photoconductivity upon fluence indicates that interfacial charge transfer dominates as an exciton decay pathway, generating charges with mobility of at least ∼0.1 cm2 V-1 s -1. At later times, a sublinear relationship shows that carrier-carrier recombination effects influence the conductivity on a longer time scale (>1 μs) with a bimolecular charge annihilation constant for the blends that is approximately two to three orders of magnitude smaller than that typical for neat polymer films. © 2008 The American Physical Society.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 55
  • Page 56
  • Page 57
  • Page 58
  • Current page 59
  • Page 60
  • Page 61
  • Page 62
  • Page 63
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet