Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Magnetic skyrmions

Professor Thorsten Hesjedal FInstP

Professor of Condensed Matter Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Thin film quantum materials
  • Oxford Quantum Institute
Thorsten.Hesjedal@physics.ox.ac.uk
Telephone: 01865 (2)72235
  • About
  • Publications

Transverse field muon-spin rotation measurement of the topological anomaly in a thin film of MnSi

Physical Review B: Condensed Matter and Materials Physics American Physical Society 93:14 (2016) 140412(R)

Authors:

T Lancaster, F Xiao, Z Salman, IO Thomas, Stephen J Blundell, F Pratt, SJ Clark, T Prokscha, A Suter, SL Zhang, Alexander A Baker, Thorsten Hesjedal

Abstract:

We present the results of transverse-field muon-spin rotation measurements on an epitaxially grown 40-nm-thick film of MnSi on Si(111) in the region of the field-temperature phase diagram where a skyrmion phase has been observed in the bulk. We identify changes in the quasistatic magnetic field distribution sampled by the muon, along with evidence for magnetic transitions around T≈40 and 30 K. Our results suggest that the cone phase is not the only magnetic texture realized in film samples for out-of-plane fields.
More details from the publisher
Details from ORA

Transverse field muon-spin rotation measurement of the topological anomaly in a thin film of MnSi

(2015)

Authors:

T Lancaster, F Xiao, Z Salman, IO Thomas, SJ Blundell, FL Pratt, SJ Clark, T Prokscha, A Suter, SL Zhang, AA Baker, T Hesjedal
More details from the publisher

Study of Ho-doped Bi2Te3 topological insulator thin films

Applied Physics Letters American Institute of Physics 107:18 (2015) 182406

Authors:

SE Harrison, Liam J Collins-McIntyre, Shilei Zhang, Alexander A Baker, AI Figueroa, AJ Kellock, A Pushp, YL Chen, SSP Parkin, JS Harris, G van der Laan, Thorsten Hesjedal

Abstract:

Breaking time-reversal symmetry through magnetic doping of topological insulators has been identified as a key strategy for unlocking exotic physical states. Here, we report the growth of Bi2Te3 thin films doped with the highest magnetic moment element Ho. Diffraction studies demonstrate high quality films for up to 21% Ho incorporation. Superconducting quantum interference device magnetometry reveals paramagnetism down to 2 K with an effective magnetic moment of ∼5 μB/Ho. Angle-resolved photoemission spectroscopy shows that the topological surface state remains intact with Ho doping, consistent with the material's paramagnetic state. The large saturation moment achieved makes these films useful for incorporation into heterostructures, whereby magnetic order can be introduced via interfacial coupling.
More details from the publisher
Details from ORA
More details

Angular control of a hybrid magnetic metamolecule using anisotropic FeCo

Physical Review Applied American Physical Society 4:5 (2015) 054015

Authors:

SA Gregory, LC Maple, GBG Stenning, Thorsten Hesjedal, G van der Laan, GJ Bowden

Abstract:

By coupling magnetic elements to metamaterials, hybrid metamolecules can be created with useful properties such as photon-magnon mode mixing. Here, we present results for a split-ring resonator (SRR) placed in close proximity to a thin crystalline film of magnetically hard FeCo. Eddy-current shielding is suppressed by patterning the FeCo into 100-μm disks. At the ferromagnetic resonance (FMR) condition of FeCo, photon-magnon coupling strengths of 5% are observed. Altogether, three distinct features are presented and discussed: (i) remanent magnets allow FMR to be performed in a near-zero field, partially eliminating the need for applied fields; (ii) the anisotropic FMR permits angular control over hybrid SRR and FMR resonances; and (iii) the in-plane and out-of-plane magnetization of FeCo opens the door to “magnetically configurable metamaterials” in real time. Finally, a special study is presented of how best to excite the numerous transverse magnetic and electric modes of the SRR by using near-field excitation from a coplanar waveguide.
More details from the publisher
Details from ORA
More details

Massive Dirac fermion observed in lanthanide-doped topological insulator thin films

Scientific Reports Nature Publishing Group 5:1 (2015) 15767

Authors:

SE Harrison, Liam J Collins-McIntyre, Piet Schönherr, A Vailionis, V Srot, PA van Aken, AJ Kellock, A Pushp, SSP Parkin, JS Harris, B Zhou, YL Chen, Thorsten Hesjedal

Abstract:

The breaking of time reversal symmetry (TRS) in three-dimensional (3D) topological insulators (TIs) and thus the opening of a ‘Dirac-mass gap’ in the linearly dispersed Dirac surface state, is a prerequisite for unlocking exotic physical states. Introducing ferromagnetic long-range order by transition metal doping has been shown to break TRS. Here, we present the study of lanthanide (Ln) doped Bi2Te3, where the magnetic doping with high-moment lanthanides promises large energy gaps. Using molecular beam epitaxy, single-crystalline, rhombohedral thin films with Ln concentrations of up to ~35%, substituting on Bi sites, were achieved for Dy, Gd and Ho doping. Angle-resolved photoemission spectroscopy shows the characteristic Dirac cone for Gd and Ho doping. In contrast, for Dy doping above a critical doping concentration, a gap opening is observed via the decreased spectral intensity at the Dirac point, indicating a topological quantum phase transition persisting up to room-temperature.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • Current page 39
  • Page 40
  • Page 41
  • Page 42
  • Page 43
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet