Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Prof. Patrick Irwin

Professor of Planetary Physics

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Planetary atmosphere observation analysis
  • Solar system
patrick.irwin@physics.ox.ac.uk
Telephone: 01865 (2)72083
Atmospheric Physics Clarendon Laboratory, room 306
Personal research page
NEMESIS
  • About
  • Publications

Subseasonal Variation in Neptune’s Mid-infrared Emission

The Planetary Science Journal American Astronomical Society 3:4 (2022) 78-78

Authors:

Michael T Roman, Leigh N Fletcher, Glenn S Orton, Thomas K Greathouse, Julianne I Moses, Naomi Rowe-Gurney, Patrick GJ Irwin, Arrate Antuñano, James Sinclair, Yasumasa Kasaba, Takuya Fujiyoshi, Imke de Pater, Heidi B Hammel

Abstract:

<jats:title>Abstract</jats:title> <jats:p>We present an analysis of all currently available ground-based imaging of Neptune in the mid-infrared. Dating between 2003 and 2020, the images reveal changes in Neptune’s mid-infrared (∼8–25 <jats:italic>μ</jats:italic>m) emission over time in the years surrounding Neptune’s 2005 southern summer solstice. Images sensitive to stratospheric ethane (∼12 <jats:italic>μ</jats:italic>m), methane (∼8 <jats:italic>μ</jats:italic>m), and CH<jats:sub>3</jats:sub>D (∼9 <jats:italic>μ</jats:italic>m) display significant subseasonal temporal variation on regional and global scales. Comparison with H<jats:sub>2</jats:sub> S(1) hydrogen quadrupole (∼17.035 <jats:italic>μ</jats:italic>m) spectra suggests that these changes are primarily related to stratospheric temperature changes. The stratosphere appears to have cooled between 2003 and 2009 across multiple filtered wavelengths, followed by a dramatic warming of the south pole between 2018 and 2020. Conversely, upper-tropospheric temperatures—inferred from ∼17 to 25 <jats:italic>μ</jats:italic>m imaging—appear invariant during this period, except for the south pole, which appeared warmest between 2003 and 2006. We discuss the observed variability in the context of seasonal forcing, tropospheric meteorology, and the solar cycle. Collectively, these data provide the strongest evidence to date that processes produce subseasonal variation on both global and regional scales in Neptune’s stratosphere.</jats:p>
More details from the publisher

Mid-Infrared Observations of Neptune and Uranus: Recent Discoveries and Future Opportunities

Copernicus Publications (2022)

Authors:

Michael T Roman, Leigh N Fletcher, Glenn S Orton, Thomas K Greathouse, Julianne Moses, Naomi Rowe-Gurney, Patrick GJ Irwin, Yasumasa Kasaba, Takuya Fujiyoshi, Heidi B Hammel, Imke de Pater, James Sinclair, Arrate Antuñano
More details from the publisher

Temporal variations in spectral reflectivity and vertical cloud structure of Jupiter’s Great Red Spot and its surroundings

Copernicus Publications (2022)

Authors:

Asier Anguiano-Arteaga, Santiago Pérez-Hoyos, Agustín Sánchez-Lavega, Patrick Irwin
More details from the publisher

New Constraints on Titan’s Stratospheric n-Butane Abundance

The Planetary Science Journal American Astronomical Society 3:3 (2022) 59-59

Authors:

Brendan L Steffens, Conor A Nixon, Keeyoon Sung, Patrick GJ Irwin, Nicholas A Lombardo, Eric Pereira

Abstract:

Abstract Curiously, n-butane has yet to be detected at Titan, though it is predicted to be present in a wide range of abundances that span over 2.5 orders of magnitude. We have searched infrared spectroscopic observations of Titan for signals from n-butane (n-C4H10) in Titan’s stratosphere. Three sets of Cassini Composite Infrared Spectrometer Focal Plane 4 (1050–1500 cm−1) observations were selected for modeling, having been collected from different flybys and pointing latitudes. We modeled the observations with the Nonlinear Optimal Estimator for MultivariatE Spectral AnalySIS radiative transfer tool. Temperature profiles were retrieved for each of the data sets by modeling the ν 4 emission from methane near 1305 cm−1. Then, incorporating the temperature profiles, we retrieved abundances of all of Titan’s known trace gases that are active in this spectral region, reliably reproducing the observations. We then systematically tested a set of models with varying abundances of n-butane, investigating how the addition of this gas affected the fits. We did this for several different photochemically predicted abundance profiles from the literature, as well as for a constant-with-altitude profile. Ultimately, though we did not produce any firm detection of n-butane, we derived new upper limits on its abundance specific to the use of each profile and to multiple different ranges of stratospheric altitudes. These results will tightly constrain the C4 chemistry of future photochemical modeling of Titan’s atmosphere and also motivate the continued search for n-butane and its isomer, isobutane.
More details from the publisher
Details from ORA
More details

Hazy blue worlds: A holistic aerosol model for Uranus and Neptune, including Dark Spots

(2022)

Authors:

Patrick GJ Irwin, Nicholas A Teanby, Leigh N Fletcher, Daniel Toledo, Glenn S Orton, Michael H Wong, Michael T Roman, Santiago Perez-Hoyos, Arjuna James, Jack Dobinson
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet